On the Complexity of Higher Order Abstract Voronoi Diagrams

  • Cecilia Bohler
  • Panagiotis Cheilaris
  • Rolf Klein
  • Chih-Hung Liu
  • Evanthia Papadopoulou
  • Maksym Zavershynskyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7965)


Abstract Voronoi diagrams [15,16] are based on bisecting curves enjoying simple combinatorial properties, rather than on the geometric notions of sites and circles. They serve as a unifying concept. Once the bisector system of any concrete type of Voronoi diagram is shown to fulfill the AVD properties, structural results and efficient algorithms become available without further effort. For example, the first optimal algorithms for constructing nearest Voronoi diagrams of disjoint convex objects, or of line segments under the Hausdorff metric, have been obtained this way [20].

In a concrete order-k Voronoi diagram, all points are placed into the same region that have the same k nearest neighbors among the given sites. This paper is the first to study abstract Voronoi diagrams of arbitrary order k. We prove that their complexity is upper bounded by 2k(n − k). So far, an O(k (n − k)) bound has been shown only for point sites in the Euclidean and L p plane [18,19], and, very recently, for line segments [23]. These proofs made extensive use of the geometry of the sites.

Our result on AVDs implies a 2k (n − k) upper bound for a wide range of cases for which only trivial upper complexity bounds were previously known, and a slightly sharper bound for the known cases.

Also, our proof shows that the reasons for this bound are combinatorial properties of certain permutation sequences.


Abstract Voronoi diagrams computational geometry distance problems higher order Voronoi diagrams Voronoi diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., Hurtado, F., Palop, B.: Transportation Networks and Voronoi Diagrams. In: Proceedings International Symposium on Voronoi Diagrams in Science and Engineering (2004)Google Scholar
  2. 2.
    Ahn, H.-K., Cheong, O., van Oostrum, R.: Casting a Polyhedron with Directional Uncertainty. Computational Geometry: Theory and Applications 26(2), 129–141 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest Paths, Straight Skeletons, and the City Voronoi Diagram. Discrete and Computational Geometry 31(7), 17–35 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Alon, N., Györi, E.: The number of Small Semispaces of a Finite Set of Points in the Plane. Journal of Combinatorial Theory, Ser. A 41(1), 154–157 (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Aurenhammer, F.: Voronoi Diagrams: A Survey of a Fundamental Geometric Data Structure. ACM Computing Surveys 23(3), 345–405 (1991)CrossRefGoogle Scholar
  6. 6.
    Aurenhammer, F., Drysdale, R., Krasser, H.: Farthest Line Segment Voronoi Diagrams. Information Processing Letters 100(6), 220–225 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Aurenhammer, F., Klein, R.: Voronoi Diagrams. In: Sack, J.R., Urrutia, G. (eds.) Handbook on Computational Geometry, pp. 201–290. Elsevier (1999)Google Scholar
  8. 8.
    Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Company (to appear, 2013)Google Scholar
  9. 9.
    Bae, S.W., Chwa, K.-Y.: Voronoi Diagrams for a Transportation Network on the Euclidean Plane. International Journal on Computational Geometry and Applications 16, 117–144 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Boissonnat, J.D., Wormser, C., Yvinec, M.: Curved Voronoi Diagrams. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Springer, Mathematics and Visualization (2006)Google Scholar
  11. 11.
    Descartes, R.: Principia Philosophiae. Ludovicus Elzevirius, Amsterdam, 1644Google Scholar
  12. 12.
    Fortune, S.: Voronoi Diagrams and Delaunay Triangulations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 20, pp. 377–388. CRC Press LLC (1997)Google Scholar
  13. 13.
    Goodman, J.E., Pollack, R.: On the Combinatorial Classification of Non-Degenerate Configurations in the Plane. Journal of Combinatorial Theory, Ser. A 29, 220–235 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Karavelas, M.I., Yvinec, M.: The Voronoi Diagram of Planar Convex Objects. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 337–348. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  16. 16.
    Klein, R., Langetepe, E., Nilforoushan, Z.: Abstract Voronoi Diagrams Revisited. Computational Geometry: Theory and Applications 42(9), 885–902 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Klein, R., Mehlhorn, K., Meiser, S.: Randomized Incremental Construction of Abstract Voronoi Diagrams. Computational Geometry: Theory and Applications 3, 157–184 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lee, D.-T.: On k-Nearest Neighbor Voronoi Diagrams in the Plane. IEEE Trans. Computers 31(6), 478–487 (1982)MATHGoogle Scholar
  19. 19.
    Liu, C.-H., Papadopoulou, E., Lee, D.T.: An Output-Sensitive Approach for the L 1/L ∞  k-Nearest-Neighbor Voronoi Diagram. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 70–81. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Mehlhorn, K., Meiser, S., Ó’Dúnlaing, C.: On the Construction of Abstract Voronoi Diagrams. Discrete and Computational Geometry 6, 211–224 (1991)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mehlhorn, K., Meiser, S., Rasch, R.: Furthest Site Abstract Voronoi Diagrams. International Journal of Computational Geometry and Applications 11(6), 583–616 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics (2000)Google Scholar
  23. 23.
    Papadopoulou, E., Zavershynskyi, M.: On Higher Order Voronoi Diagrams of Line Segments. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 177–186. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cecilia Bohler
    • 1
  • Panagiotis Cheilaris
    • 2
  • Rolf Klein
    • 1
  • Chih-Hung Liu
    • 1
  • Evanthia Papadopoulou
    • 2
  • Maksym Zavershynskyi
    • 2
  1. 1.Institute of Computer Science IUniversity of BonnBonnGermany
  2. 2.Faculty of InformaticsUniversity of LuganoLuganoSwitzerland

Personalised recommendations