Noncommutativity Makes Determinants Hard

  • Markus Bläser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7965)


We consider the complexity of computing the determinant over arbitrary finite-dimensional algebras. We first consider the case that A is fixed. We obtain the following dichotomy: If A/rad A is noncommutative, then computing the determinant over A is hard. “Hard” here means #P-hard over fields of characteristic 0 and Mod p P-hard over fields of characteristic p > 0. If A/ rad A is commutative and the underlying field is perfect, then we can compute the determinant over A in polynomial time.

We also consider the case when A is part of the input. Here the hardness is closely related to the nilpotency index of the commutator ideal of A. The commutator ideal com(A) of A is the ideal generated by all elements of the form xy − yx with x,y ∈ A. We prove that if the nilpotency index of com(A) is linear in n, where n ×n is the format of the given matrix, then computing the determinant is hard. On the other hand, we show the following upper bound: Assume that there is an algebra B ⊆ A with B = A/ rad(A). (If the underlying field is perfect, then this is always true.) The center Z(A) of A is the set of all elements that commute with all other elements. It is a commutative subalgebra. We call an ideal J a complete ideal of noncommuting elements if B + Z(A) + J = A. If there is such a J with nilpotency index o(n/logn), then we can compute the determinant in subexponential time. Therefore, the determinant cannot be hard in this case, assuming the counting version of the exponential time hypothesis.

Our results answer several open questions posed by Chien et al. [4].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arvind, V., Srinivasan, S.: On the hardness of the noncommutative determinant. In: Proc. 42nd ACM Symp. on Theory of Comput (STOC), pp. 677–686 (2010)Google Scholar
  2. 2.
    Barvinok, A.: Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor. Random Struct. Algorithms 14(1), 29–61 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bläser, M., Dell, H.: Complexity of the cover polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chien, S., Harsha, P., Sinclair, A., Srinivasan, S.: Almost settling the hardness of noncommutative determinant. In: Proc. 43rd ACM Symp. on Theory of Comput (STOC), pp. 499–508 (2011)Google Scholar
  5. 5.
    Chien, S., Sinclair, A.: Algebras with polynomial identities and computing the determinant. J. Comput. Sys. Sci. 67(2), 263–290 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chien, S., Rasmussen, L., Sinclair, A.: Clifford algebras and approximating the permanent. J. Comput. Sys. Sci. 67(2), 263–290 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dell, H., Husfeldt, T., Wahlén, M.: Exponential Time Complexity of the Permanent and the Tutte Polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 426–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Drozd, Y.A., Kirichenko, V.V.: Finite dimensional algebras. Springer (1994)Google Scholar
  9. 9.
    Godsil, C.D., Gutman, I.: On the matching polynomial of a graph. In: Lovász, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory, vol. 1, pp. 241–249. North-Holland (1981)Google Scholar
  10. 10.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kamarkar, N., Karp, R.M., Lipton, R.J., Lovász, L., Luby, M.: A Monte-Carlo algorithm for estimating the permanent. SIAM J. Comput. 22(2), 284–293 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mahajan, M., Vinay, V.: Determinant: Old algorithms and new insights. SIAM J. Discrete Math. 12(4), 474–490 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Moore, C., Russell, A.: Approximating the permanent via nonabelian determinants, arXiv:0906.1702 (2009)Google Scholar
  14. 14.
    Nisan, N.: Lower bounds for noncommutative computation. In: Proc. 23rd ACM Symp. on Theory of Comput. (STOC), pp. 410–418 (1991)Google Scholar
  15. 15.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8, 189–201 (1979)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Bläser
    • 1
  1. 1.Saarland UniversityGermany

Personalised recommendations