Discovering Links between Political Debates and Media

  • Damir Juric
  • Laura Hollink
  • Geert-Jan Houben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7977)

Abstract

Politics and media are heavily intertwined and both play a role in the discussion on policy proposals and current affairs. However, a dataset that allows a joint analysis of the two does not yet exist. In this paper we take the first step by discovering links between parliamentary debates in a political dataset and newspaper articles in a media dataset. Our approach consists of 3 steps. We first discover topics discussed in the debates. Second, we query a newspaper archive for relevant articles using a combination of debate elements: dates, actors, topics, and named entities of the debates. Finally, we discover links, represent them in RDF, and make them available for download. An evaluation of various versions of this approach shows that the topic detection adds to the quality of the discovered links, as well as the use of the semantic structure of the debate, such as headers and a division into smaller events.

Keywords

RDF parliamentary debates NER topic modeling linking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Erp, Marieke, et al.: Automatic Heritage Metadata Enrichment with Historic Events. In: Trant, J., Bearman, D. (eds.) Museums and the Web 2011: Proceedings. Archives & Museum Informatics, Toronto (2011)Google Scholar
  2. 2.
    van Hage, W., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the Simple Event Model (SEM). J. Web Semantics (2011)Google Scholar
  3. 3.
    van Hage, W.R., Malaisé, V., de Vries, G., Schreiber, G., van Someren, M.: Combining Ship Trajectories and Semantics with the Simple Event Model (SEM). In: Proceedings of the 1st ACM International Workshop on Events in Multimedia, pp. 73–80 (2009)Google Scholar
  4. 4.
    Mekhaldi, D., Lalanne, D.: Multimodal Document Alignment: Feature-based Validation to Strengthen Thematic Links. JMPT 1(1), 30–46 (2010)Google Scholar
  5. 5.
    Lv, Y., Moon, T., Kolari, P., Zheng, Z., Wang, X., Chang, Y.: Learning to model relatedness for news recommendation. In: WWW (2011)Google Scholar
  6. 6.
    Rao, D., McNamee, P., Dreze, M.: Entity Linking: Finding Extracted Entities in a Knowledge Base. Springer Lecture Notes in Computer Science: Multisource, Multilingual Information Extraction and Summarization (2011)Google Scholar
  7. 7.
    Gottipati, S., Jiang, J.: SMU-SIS at TAC 2010 - KBP Track Entity Linking. In: Proceedings of Text Analysis Conference (TAC 2010) Workshop (2010)Google Scholar
  8. 8.
    Gottipati, S., Jiang, J.: Linking entities to a knowledge base with query expansion. Empirical Methods in Natural Language Processing, EMNLP (2011)Google Scholar
  9. 9.
    Han, X., Sun, L.: A generative entity-mention model for linking entities with knowledge base. Association for Computational Linguistics (2011)Google Scholar
  10. 10.
    Bron, M., Huurnink, B., de Rijke, M.: Linking Archives Using Document Enrichment and Term Selection. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.) TPDL 2011. LNCS, vol. 6966, pp. 360–371. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kern, R., Granitzer, M.: German encyclopedia alignment based on information retrieval techniques. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 315–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chang, J., Boyd-Graber, J.L., Gerrish, S., Wang, C., Blei, D.M.: Reading Tea Leaves: How Humans Interpret Topic Models. In: Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems (2009)Google Scholar
  13. 13.
    McCallum, Andrew Kachites: MALLET: A Machine Learning for Language Toolkit (2002), http://mallet.cs.umass.edu
  14. 14.
    Darling, W.M.: A Theoretical and Practical Implementation Tutorial on Topic Modeling and Gibbs Sampling (2011)Google Scholar
  15. 15.
    Montalvo, S., Martínez, R., Casillas, A., Fresno, V.: Bilingual news clustering using named entities and fuzzy similarity. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 107–114. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Damir Juric
    • 1
    • 3
  • Laura Hollink
    • 2
  • Geert-Jan Houben
    • 1
  1. 1.Delft University of TechnologyThe Netherlands
  2. 2.VU University AmsterdamThe Netherlands
  3. 3.FER University of ZagrebCroatia

Personalised recommendations