Summaries on the Fly: Query-Based Extraction of Structured Knowledge from Web Documents

  • Besnik Fetahu
  • Bernardo Pereira Nunes
  • Stefan Dietze
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7977)


A large part of Web resources consists of unstructured textual content. Processing and retrieving relevant content for a particular information need is challenging for both machines and humans. While information retrieval techniques provide methods for detecting suitable resources for a particular query, information extraction techniques enable the extraction of structured data and text summarization allows the detection of important sentences. However, these techniques usually do not consider particular user interests and information needs. In this paper, we present a novel method to automatically generate structured summaries from user queries that uses POS patterns to identify relevant statements and entities in a certain context. Finally, we evaluate our work using the publicly available New York Times corpus, which shows the applicability of our method and the advantages over previous works.


POS pattern analysis knowledge extraction text summarization query-based summaries entity recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Augenstein, I., Padó, S., Rudolph, S.: Lodifier: Generating linked data from unstructured text. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 210–224. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar
  3. 3.
    Bouayad-Agha, N., Casamayor, G., Wanner, L., Díez, F., López Hernández, S.: FootbOWL: Using a generic ontology of football competition for planning match summaries. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 230–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Brandow, R., Mitze, K., Rau, L.F.: Automatic condensation of electronic publications by sentence selection. Inf. Process. Manage. 31(5), 675–685 (1995)CrossRefGoogle Scholar
  5. 5.
    Bryl, V., Giuliano, C., Serafini, L., Tymoshenko, K.: Supporting natural language processing with background knowledge: Coreference resolution case. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 80–95. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cheng, G., Tran, T., Qu, Y.: Relin: Relatedness and informativeness-based centrality for entity summarization. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 114–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: A framework and graphical development environment for robust nlp tools and applications. In: ACL, pp. 168–175 (2002)Google Scholar
  8. 8.
    Dietze, S., Maynard, D., Demidova, E., Risse, T., Peters, W., Doka, K., Stavrakas, Y.: Entity extraction and consolidation for social web content preservation. In: SDA, pp. 18–29 (2012)Google Scholar
  9. 9.
    Etzioni, O., Banko, M., Soderland, S., Weld, D.S.: Open information extraction from the web. Commun. ACM 51(12), 68–74 (2008)CrossRefGoogle Scholar
  10. 10.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: EMNLP, pp. 1535–1545 (2011)Google Scholar
  11. 11.
    Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL (2005)Google Scholar
  12. 12.
    Gong, Y., Liu, X.: Generic text summarization using relevance measure and latent semantic analysis. In: SIGIR, pp. 19–25 (2001)Google Scholar
  13. 13.
    Grefenstette, G.: Short query linguistic expansion techniques: Palliating one-word queries by providing intermediate structure to text. In: Pazienza, M.T. (ed.) SCIE 1997. LNCS, vol. 1299, pp. 97–114. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Hovy, D., Fan, J., Gliozzo, A.M., Patwardhan, S., Welty, C.A.: When did that happen? - linking events and relations to timestamps. In: EACL, pp. 185–193 (2012)Google Scholar
  15. 15.
    Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D.: Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared task. In: Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task, CONLL Shared Task 2011, Stroudsburg, PA, USA, pp. 28–34. Association for Computational Linguistics (2011)Google Scholar
  16. 16.
    Lin, C.-Y.: Rouge: A package for automatic evaluation of summaries. In: Marie-Francine Moens, S.S. (ed.) Text Summarization Branches Out: Proceedings of the ACL 2004 Workshop, Barcelona, Spain, pp. 74–81. Association for Computational Linguistics (2004)Google Scholar
  17. 17.
    Mausam, M., Schmitz, S., Soderland, R.: Bart, and O. Etzioni. Open language learning for information extraction. In: EMNLP-CoNLL, pp. 523–534 (2012)Google Scholar
  18. 18.
    Pereira Nunes, B., Kawase, R., Dietze, S., Taibi, D., Casanova, M.A., Nejdl, W.: Can entities be friends? In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 45–57. Springer, Heidelberg (1995)Google Scholar
  19. 19.
    Radev, D.R., McKeown, K.: Generating natural language summaries from multiple on-line sources. Computational Linguistics 24(3), 469–500 (1998)Google Scholar
  20. 20.
    Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky, D., Manning, C.D.: A multi-pass sieve for coreference resolution. In: EMNLP, pp. 492–501 (2010)Google Scholar
  21. 21.
    Ritter, A., Mausam, Etzioni, O., Clark, S.: Open domain event extraction from twitter. In: KDD, pp. 1104–1112 (2012)Google Scholar
  22. 22.
    Tombros, A., Sanderson, M.: Advantages of query biased summaries in information retrieval. In: SIGIR, pp. 2–10 (1998)Google Scholar
  23. 23.
    Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech tagging with a cyclic dependency network. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, NAACL 2003, Stroudsburg, PA, USA, vol. 1, pp. 173–180. Association for Computational Linguistics (2003)Google Scholar
  24. 24.
    Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora: Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics, EMNLP 2000, Stroudsburg, PA, USA, vol. 13, pp. 63–70. Association for Computational Linguistics (2000)Google Scholar
  25. 25.
    Wan, X.: Topic analysis for topic-focused multi-document summarization. In: CIKM, pp. 1609–1612 (2009)Google Scholar
  26. 26.
    Wang, D., Zhu, S., Li, T., Chi, Y., Gong, Y.: Integrating document clustering and multidocument summarization. TKDD 5(3), 14 (2011)CrossRefGoogle Scholar
  27. 27.
    White, M., Korelsky, T.: Multidocument summarization via information extraction. In: Proceedings of the HLT Conference, pp. 263–269 (2001)Google Scholar
  28. 28.
    Zhou, Y., Guo, Z., Ren, P., Yu, Y.: Applying wikipedia-based explicit semantic analysis for query-biased document summarization. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 474–481. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Besnik Fetahu
    • 1
  • Bernardo Pereira Nunes
    • 1
    • 2
  • Stefan Dietze
    • 1
  1. 1.L3S Research CenterLeibniz University HannoverGermany
  2. 2.Department of InformaticsPUC-RioRio de JaneiroBrazil

Personalised recommendations