Tag Cloud Generation for Results of Multiple Keywords Queries

  • Martin Leginus
  • Peter Dolog
  • Ricardo Gomez Lage
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7977)


In this paper we study tag cloud generation for retrieved results of multiple keyword queries. It is motivated by many real world scenarios such as personalization tasks, surveillance systems and information retrieval tasks defined with multiple keywords. We adjust the state-of-the-art tag cloud generation techniques for multiple keywords query results. Consequently, we conduct the extensive evaluation on top of three distinct collaborative tagging systems. The graph-based methods perform significantly better for the Movielens and Bibsonomy datasets. Tag cloud generation based on maximal coverage is more suitable for the Delicious dataset because of the different statistical properties of the dataset.


  1. 1.
    Aras, H., Siegel, S., Malaka, R.: Semantic cloud: an enhanced browsing interface for exploring resources in folksonomy systems. In: Workshop on Visual Interfaces to the Social and Semantic Web (VISSW2010), IUI 2010, Hong Kong, China, 2010 (February 7, 2009)Google Scholar
  2. 2.
    Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, pp. 193–202. ACM (2008)Google Scholar
  3. 3.
    A.T. Company, Keyword and search engines statistics (2013)Google Scholar
  4. 4.
    Haveliwala, T.: Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering 15(4), 784–796 (2003)CrossRefGoogle Scholar
  5. 5.
    Knowledge and U. o. K. Data Engineering Group. Benchmark folksonomy data from bibsonomy, version of January 1, 2010 (2010)Google Scholar
  6. 6.
    Leginus, M., Dolog, P., Lage, R.: Graph based techniques for tag cloud generation. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media. ACM (2013)Google Scholar
  7. 7.
    Leginus, M., Dolog, P., Lage, R., Durao, F.: Methodologies for improved tag cloud generation with clustering. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 61–75. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, Previous number = SIDL-WP-1999-0120 (November 1999)Google Scholar
  9. 9.
    Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 835–844. ACM, New York (2011)CrossRefGoogle Scholar
  10. 10.
    White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 266–275. ACM, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Leginus
    • 1
  • Peter Dolog
    • 1
  • Ricardo Gomez Lage
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborg-EastDenmark

Personalised recommendations