Regression Modeling of Reader’s Emotions Induced by Font Based Text Signals

  • Dimitrios Tsonos
  • Georgios Kouroupetroglou
  • Despina Deligiorgi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8010)

Abstract

In this work we presented a mathematical model for the readers’ emotional state responses triggered by font style, type and color. It is based on multiple regression analysis of the repeated measures from 45 students and for 35 textual stimuli using the Self-Assessment Manikin test. Based on the dimensional theory of emotions, we propose a model on how emotional dimensions Pleasure, Arousal, and Dominance vary according to the typographic text signals: font style, font type and font/background color combinations. We observe that “Pleasure” dimension is affected negatively by font type (“Arial” and “Times New Roman”) and positively by color brightness difference of font/background color combinations. “Arousal” and “Dominance” are affected only by color brightness difference (negative correlation). According to the proposed model, font type “Arial” elicits more pleasant emotional state than “Times New Roman”. The results can be applied to augment user interface experience or to add expressivity in Text-to-Speech systems and provide accessibility of typography induced text signals.

Keywords

document accessibility text signals reader’s emotions Text-to-Speech Self-Assessment Manikin test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kouroupetroglou, G., Tsonos, D.: Multimodal Accessibility of Documents. In: Pinder, S. (ed.) Advances in Human-Computer Interaction, pp. 451–470. I-Tech Education and Publishing, Vienna (2008)Google Scholar
  2. 2.
    Fellbaum, K., Kouroupetroglou, G.: Principles of Electronic Speech Processing with Applications for People with Disabilities. Technology and Disability 20(2), 55–85 (2008)Google Scholar
  3. 3.
    McLuhan, M., Fiore, Q.: The Medium is the Message. Gingko Press, Berkeley (2005)Google Scholar
  4. 4.
    Lorch, R.F.: Text-Signaling Devices and Their Effects on Reading and Memory Processes. Educational Psychology Review 1(3), 209–234 (1989)CrossRefGoogle Scholar
  5. 5.
    Spyridakis, J.H.: Signaling effects: A review of the research—Part I. Journal of Technical Writing and Communication 19(3), 227–240 (1989)CrossRefGoogle Scholar
  6. 6.
    Lemarié, J., Eyrolle, H., Cellier, J.M.: Visual signals in text comprehension: How to restore them when oralizing a text via a speech synthesis? Computers in Human Behavior 22(6), 1096–1115 (2006)CrossRefGoogle Scholar
  7. 7.
    Han, Z.H., Park, E.S., Combs, C.: Textual Enhancement of Input: Issues and Possibilities. Applied Linguistics 29(4), 597–618 (2008)CrossRefGoogle Scholar
  8. 8.
    Schröder, M.: Expressing degree of activation in synthetic speech. IEEE Trans. on Audio, Speech and Language Processing 14(4), 1128–1136 (2006)CrossRefGoogle Scholar
  9. 9.
    Lang, P.J., Bradley, M., Culthbert, B.: International affective picture system (IAPS): instruction manual and affective ratings. Technical Report A-6, The Center for Research in Psychophysiology, University of Florida, USA (2005)Google Scholar
  10. 10.
    Mehrabian, A.: Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in Temperament. Current Psychology 14(4), 261–292 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied Statistics for the Behavioral Sciences, 5th edn. Wadsworth Publishing (2002)Google Scholar
  12. 12.
    Holsclaw, T.N.: Investigation of repeated measures linear regression methodologies. Master Thesis, Faculty of the Department of Mathematics, San Jose State University (2007)Google Scholar
  13. 13.
    Lorch Jr., R.F., Myers, J.L.: Regression analyses of repeated measures data in cognitive research. J. Exp. Psychol. Learn. Mem. Cogn. 16(1), 149–157 (1990)CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    Bernard, M.L., Chaparro, B.S., Mills, M.M., Halcomb, C.G.: Comparing the effects of text size and format on the readibility of computer-displayed Times New Roman and Arial text. International Journal of Human Computer Studies 59(6), 823–835 (2003)CrossRefGoogle Scholar
  17. 17.
    Hall, R.H., Hanna, P.: The impact of web page text-background colour combinations on readability, retention, aesthetics and behavioural intention. Behaviour and Information Technology 23(3), 183–195 (2004)CrossRefGoogle Scholar
  18. 18.
    Tsonos, D., Kouroupetroglou, G.: Modeling Reader’s Emotional State Response on Document’s Typographic Elements. In: Advances in Human-Computer Interaction, 18 pages (2011), doi:10.1155/2011/206983Google Scholar
  19. 19.
    Kouroupetroglou, G., Tsonos, D., Vlahos, E.: DocEmoX: A System for the Typography-Derived Emotional Annotation of Documents. In: Stephanidis, C. (ed.) Universal Access in HCI, Part III, HCII 2011. LNCS, vol. 5616, pp. 550–558. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Emotion Markup Language (EmotionML) 1.0, http://www.w3.org/TR/emotionml/
  21. 21.
    Tsonos, D., Xydas, G., Kouroupetroglou, G.: Auditory Accessibility of Metadata in Books: A Design for All Approach. In: Stephanidis, C. (ed.) Universal Access in HCI, Part III, HCII 2007. LNCS, vol. 4556, pp. 436–445. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Freitas, D., Kouroupetroglou, G.: Speech Technologies for Blind and Low Vision Persons. Technology and Disability 20(2), 135–156 (2008)Google Scholar
  23. 23.
    Lemarié, J., Lorch, R.F., Eyrolle, H., Virbel, J.: SARA: A Text-Based and Reader-Based Theory of Text Signaling. Educational Psychologist 43(1), 27–48 (2008)CrossRefGoogle Scholar
  24. 24.
    Lemarié, J., Eyrolle, H., Cellier, J.-M.: Visual signals in text comprehension: How to restore them when oralizing a text via speech synthesis. Computers in Human Behavior 22, 1096–1115 (2006)CrossRefGoogle Scholar
  25. 25.
    Lorch Jr., R.F., Lemarié, J., Grant, R.A.: Signaling hierarchical and sequential organization in expository text. Scientific Studies of Reading 15, 267–284 (2011)CrossRefGoogle Scholar
  26. 26.
    Lorch, R.F., Chen, H.-T., Lemarié, J.: Communicating headings and preview sentences in text and speech. Journal of Experimental Psychology: Applied 18(3), 265–276 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dimitrios Tsonos
    • 1
  • Georgios Kouroupetroglou
    • 1
  • Despina Deligiorgi
    • 2
  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensGreece
  2. 2.Department of PhysicsNational and Kapodistrian University of AthensGreece

Personalised recommendations