Effortless Passive BCIs for Healthy Users

  • Anne-Marie Brouwer
  • Jan van Erp
  • Dirk Heylen
  • Ole Jensen
  • Mannes Poel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8009)


While a BCI usually aims to provide an alternative communication channel for disabled users who have difficulties to move or to speak, we focused on BCIs as a way to retrieve and use information about an individual’s cognitive or affective state without requiring any effort or intention of the user to convey this information. Providing only an extra channel of information rather than a replacement of certain functions, such BCIs could be useful for healthy users as well. We describe the results of our studies on neurophysiological correlates of attention, workload and emotion, as well as our efforts to include physiological variables. We found different features in EEG to be indicative of attention and workload, while emotional state may be better measured by physiological variables like heart rate and skin conductance. Potential applications are described. We argue that major challenges lie in hardware and generalization issues.


Passive BCI user state monitoring attention workload emotion EEG MEG NIRS physiological measures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahramisharif, A., van Gerven, M., Heskes, T., Jensen, O.: Covert attention allows for continuous control of brain–computer interfaces. European Journal of Neuroscience 31(8), 1501–1508 (2010)CrossRefGoogle Scholar
  2. 2.
    Berka, C., Levendowski, D.J., Lumicao, M.N., Yau, A., Davis, G., Zivkovic, V.T., Olmstead, R.E., Tremoulet, P.D., Craven, P.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks, Aviation, Space, and Environmental Medicine 78 (5 suppl.) (2007)Google Scholar
  3. 3.
    Brookings, J.B., Wilson, G.F., Swain, C.: Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology 42, 361–377 (1996)CrossRefGoogle Scholar
  4. 4.
    Brouwer, A.-M., Hogervorst, M.A., van Erp, J.B.F., Heffelaar, T., Zimmerman, P.H., Oostenveld, R.: Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of Neural Engineering 9(4), 045008 (2012)Google Scholar
  5. 5.
    Brouwer, A.-M., Hogervorst, M.A., Herman, P., Kooi, F.: Are You Really Looking? Finding the Answer through Fixation Patterns and EEG. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) FAC 2009. LNCS, vol. 5638, pp. 329–338. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Brouwer, A.-M., van Wouwe, N., Mühl, C., van Erp, J.B.F., Toet, A.: Perceiving blocks of emotional pictures and sounds: Valence and arousal effects on heart rate, heart rate variability and skin conductance (submitted)Google Scholar
  7. 7.
    Codispoti, M., Bradley, M.M., Lang, P.: Affective reactions to briefly presented pictures. Psychophysiology 38(3), 474–478 (2001)CrossRefGoogle Scholar
  8. 8.
    Coffey, E.B.J., Brouwer, A.-M., van Erp, J.B.F.: Measuring workload using a combination of electroencephalography and near infrared spectroscopy. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56, pp. 18–22 (2012)Google Scholar
  9. 9.
    Coffey, E.B.J., Brouwer, A.-M., Wilschut, E.S., van Erp, J.: Brain-Machine Interfaces in space: Using spontaneous rather than intentionally generated brain signals. ActaAstronautica 67, 1–11 (2010)CrossRefGoogle Scholar
  10. 10.
    Graham, F.K.: Attention: The heartbeat, the blink, and the brain. Attention and information processing in infants and adults: Perspectives from human and animal research. In: Campbell, B.A., Hayne, H., Richardson, R. (eds.) Hillsdale: Lawrence Erlbaum Associates, pp. 3–29 (1992)Google Scholar
  11. 11.
    Grimes, D., Tan, D.S., Hudson, S.E., Shenoy, P., Rao, R.P.: Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 835–844. ACM, Florence (2008)CrossRefGoogle Scholar
  12. 12.
    Gürkök, H., Nijholt, A., Poel, M.: Brain-Computer Interface Games: Towards a Framework. In: Herrlich, M., Malaka, R., Masuch, M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 373–380. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Händel, B.F., Haarmeier, T., Jensen, O.: Alpha oscillations correlate with the successful inhibition of unattended stimuli. J. Cogn. Neurosci. 23, 2494–2502 (2011)CrossRefGoogle Scholar
  14. 14.
    Jensen, O., Bahramisharif, A., Oostenveld, R., Klanke, S., Hadjipapas, A., Okazaki, Y., Van Gerven, M.: Using brain-computer interfaces and brain-state dependent stimulation as a tool in cognitive neuroscience. Front. Psychology 2, 100 (2011)Google Scholar
  15. 15.
    Klimesch, W., Sauseng, P., Hanslmayr, S.: EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88 (2007)CrossRefGoogle Scholar
  16. 16.
    Koenig, A., Omlin, X., Zimmerli, L., Sapa, M., Krewer, C., Bolliger, M., Müller, F., Riener, R.: Psychological state estimation from physiological recordings during robot-assisted gait rehabilitation. Journal of rehabilitation research and development 48(4), 367–385 (2011)CrossRefGoogle Scholar
  17. 17.
    Kohlmorgen, J., et al.: Improving human performance in a real operating environment through real-time mental workload detection. Toward Brain-Computer Interfacing, 409–422 (2007)Google Scholar
  18. 18.
    Lacey, J.I., Lacey, B.: Some automatic-central nervous system interrelationships. In: Black, P. (ed.) Physiological Correlates of Emotion, Academic Press, New York (1970)Google Scholar
  19. 19.
    Meeuwissen, E.B., Takashima, A., Fernandez, G., Jensen, O.: Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences. Human Brain Mapping 32, 2045–2053 (2011)CrossRefGoogle Scholar
  20. 20.
    Mühl, C., Brouwer, A.-M., van Wouwe, N., van den Broek, E., Nijboer, F., Heylen, D.: Modality-specific Affective Responses and their Implications for Affective BCI. In: Müller-Putz, G.R., Scherer, R., Billinger, M., Kreilinger, A., Kaiser, V., Neuper, C. (eds.) Proceedings of the Fifth International Brain-Computer Interface Conference 2011, pp. 120–123. Verlag der Technischen Universität, Graz (2011) ISBN 978-3-85125-140-1Google Scholar
  21. 21.
    Mühl, C., van den Broek, E.L., Brouwer, A.-M., Nijboer, F., van Wouwe, N., Heylen, D.: Multi-modal Affect InductionforAffective Brain-Computer Interfaces. In: D’Mello, S., Graesser, A., Schuller, B., Martin, J.-C. (eds.) ACII 2011, Part I. LNCS, vol. 6974, pp. 235–245. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. Journal of NeuroEngineering and Rehabilitation 9, 21 (2012)CrossRefGoogle Scholar
  23. 23.
    Pfurtscheller, G., StancakJr, A., Neuper, C.: Event-related synchronization (ERS) in the alpha band: an electrophysiological correlate of cortical idling. Int. J. Psychophysiol. 24, 39–46 (1996)CrossRefGoogle Scholar
  24. 24.
    Popovic, S., Slamic, M., Cosic, K.: Scenario self-adaptation in virtual reality exposure therapy for posttraumatic stress disorder. In: Roy, M.J. (ed.) Novel Approaches to the Diagnosis and Treatment of Posttraumatic Stress Disorder. IOS Press (2006)Google Scholar
  25. 25.
    Reuderink, B.: Robust brain-computer interfaces. PhD thesis, University of Twente. (2011), http://borisreuderink.nl/phdthesis.html
  26. 26.
    Taylor, G., Reinerman-Jones, L.E., Cosenzo, K., Nicholson, D.: Comparison of Multiple Physiological Sensors to Classify Operator State in Adaptive Automation Systems. In: Proceedings of the 54th Annual Meeting of the Human Factors and Ergonomics Society, HFES (2010)Google Scholar
  27. 27.
    van Erp, J.B.F., Lotte, F., Tangermann, M.: Brain-Computer Interfaces: Beyond Medical Applications. Computer 45(4), 26–34 (2012)CrossRefGoogle Scholar
  28. 28.
    Zander, T.O., Lehne, M., Ihme, K., Jatzev, S., Correia, J., Kothe, C., Picht, B., Nijboer, F.: A dry EEG-system for scientific research and brain-computer interfaces. Frontiers in Neuroscience 5, 53 (2011)CrossRefGoogle Scholar
  29. 29.
    Zander, T., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. Journal of Neural Engineering 8, 025005 (2011)Google Scholar
  30. 30.
    Zander, T., Kothe, C., Welke, S., Roetting, M.: Enhancing Human-Machine systems with secondary input from passive Brain-Computer interfaces. In: Proceedings from the 4th International BCI Workshop and Training Course, Graz (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anne-Marie Brouwer
    • 1
  • Jan van Erp
    • 1
  • Dirk Heylen
    • 2
  • Ole Jensen
    • 3
  • Mannes Poel
    • 2
  1. 1.TNOSoesterbergThe Netherlands
  2. 2.Human Media Interaction (HMI) GroupUniversity of TwenteEnschedeThe Netherlands
  3. 3.Donders Institute for Brain Cognition and BehaviorNijmegenThe Netherlands

Personalised recommendations