Abstraction-Based Guided Search for Hybrid Systems

  • Sergiy Bogomolov
  • Alexandre Donzé
  • Goran Frehse
  • Radu Grosu
  • Taylor T. Johnson
  • Hamed Ladan
  • Andreas Podelski
  • Martin Wehrle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7976)


Hybrid systems represent an important and powerful formalism for modeling real-world applications such as embedded systems. A verification tool like SpaceEx is based on the exploration of a symbolic search space (the region space). As a verification tool, it is typically optimized towards proving the absence of errors. In some settings, e.g., when the verification tool is employed in a feedback-directed design cycle, one would like to have the option to call a version that is optimized towards finding an error path in the region space. A recent approach in this direction is based on guided search. Guided search relies on a cost function that indicates which states are promising to be explored, and preferably explores more promising states first. In this paper, an abstraction-based cost function based on pattern databases for guiding the reachability analysis is proposed. For this purpose, a suitable abstraction technique that exploits the flexible granularity of modern reachability analysis algorithms is introduced. The new cost function is an effective extension of pattern database approaches that have been successfully applied in other areas. The approach has been implemented in the SpaceEx model checker. The evaluation shows its practical potential.


Cost Function Model Check Hybrid System Abstract State Region Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T., Ho, P., Nicolin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R., Dang, T., Ivančić, F.: Counter-example guided predicate abstraction of hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specifications of hybrid systems in charon. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 6–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Anderson, K., Holte, R., Schaeffer, J.: Partial pattern databases. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 20–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Balluchi, A., Benvenuti, L., Benedetto, M.D.D., Pinello, C., Sangiovanni-Vincentelli, A.L.: Automotive engine control and hybrid systems: challenges and opportunities. Proceedings of the IEEE 88(7), 888–912 (2000)CrossRefGoogle Scholar
  8. 8.
    Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 142–156. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Bogomolov, S., Frehse, G., Grosu, R., Ladan, H., Podelski, A., Wehrle, M.: A box-based distance between regions for guiding the reachability analysis of SpaceEx. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 479–494. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Chutinan, C., Krogh, B.: Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control 48(1), 64–75 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3), 318–334 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems. Formal Methods in System Design 34(2), 183–213 (2009)zbMATHCrossRefGoogle Scholar
  13. 13.
    Deshpande, A., Godbole, D., Göllü, A., Varaiya, P.: Design and evaluation of tools for automated highway systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 138–148. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Egerstedt, M.: Behavior based robotics using hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 103–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Frehse, G., et al.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Henzinger, T., Wong-Toi, H.: Linear phase-portrait approximations for nonlinear hybrid systems. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 377–388. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  18. 18.
    Holte, R.C., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 121–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Johnson, T.T., Green, J., Mitra, S., Dudley, R., Erwin, R.S.: Satellite rendezvous and conjunction avoidance: Case studies in verification of nonlinear hybrid systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 252–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 203–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Kupferschmid, S., Wehrle, M.: Abstractions and pattern databases: The quest for succinctness and accuracy. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 276–290. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Larsen, B.J., Burns, E., Ruml, W., Holte, R.: Searching without a heuristic: Efficient use of abstraction. In: AAAI Conference on Artificial Intelligence (2010)Google Scholar
  23. 23.
    Livadas, C., Lygeros, J., Lynch, N.A.: High-level modelling and analysis of tcas. In: IEEE Real-Time Systems Symposium, pp. 115–125 (1999)Google Scholar
  24. 24.
    Lygeros, J., Pappas, G.J., Sastry, S.: An approach to the verification of the center-tracon automation system. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 289–304. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: From verification to falsification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 463–476. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Ratschan, S., Smaus, J.-G.: Finding errors of hybrid systems by optimising an abstraction-based quality estimate. In: Dubois, C. (ed.) TAP 2009. LNCS, vol. 5668, pp. 153–168. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Trans. Automatic Control 38(2) (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergiy Bogomolov
    • 1
  • Alexandre Donzé
    • 2
  • Goran Frehse
    • 3
  • Radu Grosu
    • 4
  • Taylor T. Johnson
    • 5
  • Hamed Ladan
    • 1
  • Andreas Podelski
    • 1
  • Martin Wehrle
    • 6
  1. 1.University of FreiburgGermany
  2. 2.University of CaliforniaBerkeleyUSA
  3. 3.Université Joseph Fourier Grenoble 1VerimagFrance
  4. 4.Vienna University of TechnologyAustria
  5. 5.University of Illinois at Urbana-ChampaignUSA
  6. 6.University of BaselSwitzerland

Personalised recommendations