On-the-Fly Control Software Synthesis

  • Vadim Alimguzhin
  • Federico Mari
  • Igor Melatti
  • Ivano Salvo
  • Enrico Tronci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7976)

Abstract

The Model Based Design approach for Hybrid Systems control software synthesis is particularly appealing since Formal System Level Specifications are usually much easier to define than the control software itself. In this setting, Design Space Exploration has the goal to find a suitable (with respect to costs and performance) choice for system design parameters. Unfortunately, a substantial part of the time devoted to design space exploration is spent trying to solve control software synthesis problems that do not have a solution. We present an on-the-fly algorithm to control software synthesis that enables effective design space exploration by speeding-up termination when no controller is found. Our experimental results show the effectiveness of our approach and how it can support a concrete realizability and schedulability analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Thiagarajan, P.S.: The discrete time behavior of lazy linear hybrid automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., Tronci, E.: Automatic control software synthesis for quantized discrete time hybrid systems. In: CDC (2012)Google Scholar
  3. 3.
    Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., Tronci, E.: On model based synthesis of embedded control software. In: EMSOFT, pp. 227–236 (2012)Google Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. TCS 138(1), 3–34 (1995)MATHCrossRefGoogle Scholar
  5. 5.
    Alur, R.: Formal verification of hybrid systems. In: EMSOFT, pp. 273–278 (2011)Google Scholar
  6. 6.
    Basten, T., et al.: Model-driven design-space exploration for embedded systems: The octopus toolset. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 90–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bemporad, A.: Hybrid Toolbox (2004), http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox/
  8. 8.
    Bemporad, A., Giorgetti, N.: A SAT-based hybrid solver for optimal control of hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 126–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Benerecetti, M., Faella, M., Minopoli, S.: Revisiting synthesis of switching controllers for linear hybrid systems. In: CDC-ECC, pp. 4753–4758 (2011)Google Scholar
  10. 10.
    Brogan, W.L.: Modern control theory, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (1991)MATHGoogle Scholar
  11. 11.
    Buttazzo, G.C.: Hard Real-Time Computing Systems, 3rd edn. Springer (2011)Google Scholar
  12. 12.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Castiglione, G., Restivo, A., Sciortino, M.: Nondeterministic moore automata and brzozowski’s algorithm. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 88–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Cimatti, A., Roveri, M., Traverso, P.: Strong planning in non-deterministic domains via model checking. In: AIPS, pp. 36–43 (1998)Google Scholar
  15. 15.
    Easwaran, A., Lee, I., Shin, I., Sokolsky, O.: Compositional schedulability analysis of hierarchical real-time systems. In: ISORC, pp. 274–281 (2007)Google Scholar
  16. 16.
    Frehse, G.: Phaver: algorithmic verification of hybrid systems past hytech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal: Status & Developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 456–459. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 582–593. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  19. 19.
    Holzmann, G.J.: The spin model checker. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Simulink by mathworks, http://www.mathworks.com
  21. 21.
    Jha, S., Seshia, S.A., Tiwari, A.: Synthesis of optimal switching logic for hybrid systems. In: EMSOFT, pp. 107–116. ACM (2011)Google Scholar
  22. 22.
    Kreisselmeier, G., Birkhölzer, T.: Numerical nonlinear regulator design. IEEE Trans. on on Automatic Control 39(1), 33–46 (1994)MATHCrossRefGoogle Scholar
  23. 23.
    Lublinerman, R., Szegedy, C., Tripakis, S.: Modular code generation from synchronous block diagrams: modularity vs. code size. In: POPL, pp. 78–89 (2009)Google Scholar
  24. 24.
    Majumdar, R., Saha, I., Zamani, M.: Performance-aware scheduler synthesis for control systems. In: EMSOFT 2011, pp. 299–308 (2011)Google Scholar
  25. 25.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Model based synthesis of control software from system level formal specifications. ACM Trans. Softw. Eng. Methodol. (to appear, 2013), A preliminary version is available at http://arxiv.org/pdf/1107.5638v2 Google Scholar
  26. 26.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Synthesis of quantized feedback control software for discrete time linear hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 180–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Linear constraints as a modeling language for discrete time hybrid systems. In: ICSEA 2012, pp. 664–671 (2012)Google Scholar
  28. 28.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Synthesizing control software from boolean relations. Int. J. on Advances in SW 5(3&4), 212–223 (2012)Google Scholar
  29. 29.
    Mari, F., Melatti, I., Salvo, I., Tronci, E.: Undecidability of quantized state feedback control for discrete time linear hybrid systems. In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 243–258. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: A tool for embedded controller synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 566–569. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Mazo, M., Tabuada, P.: Symbolic approximate time-optimal control. Systems & Control Letters 60(4), 256–263 (2011)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
  33. 33.
    Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
  35. 35.
    Roy, P., Tabuada, P., Majumdar, R.: Pessoa 2.0: a controller synthesis tool for cyber-physical systems. In: HSCC 2011, pp. 315–316 (2011)Google Scholar
  36. 36.
    Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  37. 37.
    Tronci, E.: Automatic synthesis of controllers from formal specifications. In: ICFEM, pp. 134–143. IEEE (1998)Google Scholar
  38. 38.
    Wong-Toi, H.: The synthesis of controllers for linear hybrid automata. In: CDC, vol. 5, pp. 4607–4612. IEEE (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vadim Alimguzhin
    • 1
    • 2
  • Federico Mari
    • 1
  • Igor Melatti
    • 1
  • Ivano Salvo
    • 1
  • Enrico Tronci
    • 1
  1. 1.Dip. di InformaticaSapienza Università di RomaRomaItaly
  2. 2.Department of Computer Science and RoboticsUfa State Aviation Technical UniversityUfaRussian Federation

Personalised recommendations