In the current study, we examine eye movements of human operators during a combined steering and discrimination task. In this task, observers had to alternate their gaze between a central steering task and a discrimination task in the periphery. Our results show that the observer’s gaze behavior is influenced by the motion direction of the steering task. Saccade reaction times (SRTs) of saccades to the discrimination target were shorter if the target appeared in the steering direction. SRTs back to the steering task were shorter when the steering target moved away from the discrimination target. These effects are likely the result of motion-related attention shifts and an interaction of the saccadic and smooth pursuit eye movement system.


attention eye movements saccades reaction time steering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gluck, K., Ball, J., Krusmark, M.: Cognitive Control in a Computational Model of the Predator Pilot. In: Gray, W.D. (ed.) Integrated Models of Cognitive Systems. Oxford University Press, New York (2007)Google Scholar
  2. 2.
    Fecteau, J.H., Munoz, D.P.: Salience, relevance, and firing: a priority map for target selection. Trends in Cognitive Sciences 10(8), 382–390 (2006)CrossRefGoogle Scholar
  3. 3.
    Posner, M.I.: Orienting of attention. The Quarterly Journal of Experimental Psychology 32(1), 3–25 (1980)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Proctor, R.W., Vu, K.P.L.: Human Information Processing: An Overview for Human-Computer Interaction. In: Jacko, J.A., Sears, A. (eds.) The Human-Computer Interaction Handbook, 2nd edn. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  5. 5.
    Godijn, R., Theeuwes, J.: The Relationship Between Exogenous and Endogenous Saccades and Attention. In: Radach, R., Hyona, J., Deubel, H. (eds.) The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research. North-Holland, Amsterdam (2003)Google Scholar
  6. 6.
    Theeuwes, J., Olivers, C.N.L., Belopolsky, A.: Stimulus-driven capture and contingent capture. Wiley Interdisciplinary Reviews: Cognitive Science 1(6), 872–881 (2010)CrossRefGoogle Scholar
  7. 7.
    Nothdurft, H.C.: The role of features in preattentive vision: comparison of orientation, motion and color cues. Vision Research 33(14), 1937–1958 (1993)CrossRefGoogle Scholar
  8. 8.
    Khan, A., Lefèvre, P., Heinen, S., Blohm, G.: The default allocation of attention is broadly ahead of smooth pursuit. Journal of Vision 10(13), 1–17 (2010)CrossRefGoogle Scholar
  9. 9.
    Merchant, S., Kwon, Y., Schnell, T., Etherington, T., Vogl, T., Collins, R.: Evaluation of synthetic vision information system (SVIS) displays based on pilot performance. In: Digital Avionics Systems Conference (DASC), pp. 1–12 (2001)Google Scholar
  10. 10.
    Tanaka, M., Yoshida, T., Fukushima, K.: Latency of saccades during smooth-pursuit eye movement in man. Directional asymmetries. Experimental Brain Research 121(1), 92–98 (1998)CrossRefGoogle Scholar
  11. 11.
    Hess, R.A.: Pursuit Tracking and Higher Levels of Development in the Human Pilot. IEEE Transactions on Systems, Man and Cybernetics 11(4), 262–273 (1981)CrossRefGoogle Scholar
  12. 12.
    Findlay, J.M., Gilchrist, I.D.: Active Vision: The psychology of looking and seeing. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  13. 13.
    Rizzolatti, G., Riggio, L., Dascola, I., Umiltá, C.: Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25(1A), 31–40 (1987)CrossRefGoogle Scholar
  14. 14.
    Kowler, E., Anderson, E., Dosher, B., Blaser, E.: The role of attention in the programming of saccades. Vision Research 35(13), 1897–1916 (1995)CrossRefGoogle Scholar
  15. 15.
    Baguley, T.: Calculating and graphing within-subject confidence intervals for ANOVA. Behavior Research Methods 44(1), 158–175 (2012)CrossRefGoogle Scholar
  16. 16.
    Kline, R.B.: American Psychological Association. American Psychological Association, Washington, DC (2005)Google Scholar
  17. 17.
    Kalesnykas, R., Hallett, P.E.: Retinal eccentricity and the latency of eye saccades. Vision Research 34(4), 517–531 (1994)CrossRefGoogle Scholar
  18. 18.
    Gellman, R.S., Carl, J.R.: Motion procssing for saccadic eye movements in humans. Experimental Brain Research 84(3), 660–667 (1991)CrossRefGoogle Scholar
  19. 19.
    De Brouwer, S., Yuksel, D., Blohm, G., Missal, M.: What Triggers Catch-Up Saccades During Visual Tracking. Journal of Neurophysiology 87, 1646–1650 (2002)Google Scholar
  20. 20.
    Guan, Y., Eggert, T., Bayer, O., Büttner, U.: Saccades to stationary and moving targets differ in the monkey. Experimental Brain Research 161(2), 220–232 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans-Joachim Bieg
    • 1
  • Heinrich H. Bülthoff
    • 1
    • 2
  • Lewis L. Chuang
    • 1
  1. 1.Department of Perception, Cognition and ActionMax Planck Institute for Biological CyberneticsTübingenGermany
  2. 2.Department of Cognitive and Brain EngineeringKorea UniversitySouth Korea

Personalised recommendations