OM3: Ordered Maxitive, Minitive, and Modular Aggregation Operators. A Simulation Study (II)

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 228)

Abstract

This article is a second part of the contribution on the analysis of the recently-proposed class of symmetric maxitive, minitive and modular aggregation operators. Recent results (Gagolewski, Mesiar, 2012) indicated some unstable behavior of the generalized h-index, which is a particular instance of OM3, in case of input data transformation. The study was performed on a small, carefully selected real-world data set. Here we conduct some experiments to examine this phenomena more extensively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, S., Cabrerizo, F.J., Herrera-Viedma, E., Herrera, F.: h-index: A review focused on its variants, computation and standardization for different scientific fields. Journal of Informetrics 3, 273–289 (2009)CrossRefGoogle Scholar
  2. 2.
    Barcza, K., Telcs, A.: Paretian publication patterns imply Paretian Hirsch index. Scientometrics 81(2), 513–519 (2009)CrossRefGoogle Scholar
  3. 3.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ, vol. 221. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Cena, A., Gagolewski, M.: OM3: ordered maxitive, minitive, and modular aggregation operators – Part I: Axiomatic analysis under arity-dependence. In: Proc. AGOP 2013 (in press, 2013)Google Scholar
  5. 5.
    Dubois, D., Prade, H., Testemale, C.: Weighted fuzzy pattern matching. Fuzzy Sets and Systems 28, 313–331 (1988)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Franceschini, F., Maisano, D.A.: The Hirsch index in manufacturing and quality engineering. Quality and Reliability Engineering International 25, 987–995 (2009)CrossRefGoogle Scholar
  7. 7.
    Gagolewski, M.: On the relationship between symmetric maxitive, minitive, and modular aggregation operators. Information Sciences 221, 170–180 (2013)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gagolewski, M., Cena, A.: agop: Aggregation Operators Package for R (2013), http://www.ibspan.waw.pl/~gagolews/agop/
  9. 9.
    Gągolewski, M., Grzegorzewski, P.: Arity-monotonic extended aggregation operators. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS, vol. 80, pp. 693–702. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Gagolewski, M., Grzegorzewski, P.: Possibilistic analysis of arity-monotonic aggregation operators and its relation to bibliometric impact assessment of individuals. International Journal of Approximate Reasoning 52(9), 1312–1324 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gagolewski, M., Mesiar, R.: Aggregating different paper quality measures with a generalized h-index. Journal of Informetrics 6(4), 566–579 (2012)CrossRefGoogle Scholar
  12. 12.
    Glänzel, W.: H-index concatenation. Scientometrics 77(2), 369–372 (2008a)CrossRefGoogle Scholar
  13. 13.
    Glänzel, W.: On some new bibliometric applications of statistics related to the h-index. Scientometrics 77(1), 187–196 (2008b)CrossRefGoogle Scholar
  14. 14.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation functions, Cambridge (2009)Google Scholar
  15. 15.
    Hirsch, J.E.: An index to quantify individual’s scientific research output. Proceedings of the National Academy of Sciences 102(46), 16,569–16,572 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations