Advertisement

Hypothesis Generation by Interactive Visual Exploration of Heterogeneous Medical Data

  • Cagatay Turkay
  • Arvid Lundervold
  • Astri Johansen Lundervold
  • Helwig Hauser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7947)

Abstract

High dimensional, heterogeneous datasets are challenging for domain experts to analyze. A very large number of dimensions often pose problems when visual and computational analysis tools are considered. Analysts tend to limit their attention to subsets of the data and lose potential insight in relation to the rest of the data. Generating new hypotheses is becoming problematic due to these limitations. In this paper, we discuss how interactive analysis methods can help analysts to cope with these challenges and aid them in building new hypotheses. Here, we report on the details of an analysis of data recorded in a comprehensive study of cognitive aging. We performed the analysis as a team of visualization researchers and domain experts. We discuss a number of lessons learned related to the usefulness of interactive methods in generating hypotheses.

Keywords

interactive visual analysis high dimensional medical data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, T.M.: Machine learning. McGraw Hill series in computer science. McGraw-Hill (1997)Google Scholar
  2. 2.
    Chen, J., Chen, Z.: Extended bic for small-n-large-p sparse glm. Statistica Sinica 22(2), 555 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual analytics: Scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Kehrer, J., Ladstädter, F., Muigg, P., Doleisch, H., Steiner, A., Hauser, H.: Hypothesis generation in climate research with interactive visual data exploration. IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG) 14(6), 1579–1586 (2008)CrossRefGoogle Scholar
  5. 5.
    Turkay, C., Filzmoser, P., Hauser, H.: Brushing dimensions – a dual visual analysis model for high-dimensional data. IEEE Transactions on Visualization and Computer Graphics 17(12), 2591–2599 (2011)CrossRefGoogle Scholar
  6. 6.
    Andersson, M., Ystad, M., Lundervold, A., Lundervold, A.: Correlations between measures of executive attention and cortical thickness of left posterior middle frontal gyrus - a dichotic listening study. Behavioral and Brain Functions 5(41) (2009)Google Scholar
  7. 7.
    Ystad, M., Lundervold, A., Wehling, E., Espeseth, T., Rootwelt, H., Westlye, L., Andersson, M., Adolfsdottir, S., Geitung, J., Fjell, A., et al.: Hippocampal volumes are important predictors for memory function in elderly women. BMC Medical Imaging 9(1), 17 (2009)CrossRefGoogle Scholar
  8. 8.
    Ward, M.O.: Xmdvtool: integrating multiple methods for visualizing multivariate data. In: Proceedings of the Conference on Visualization, VIS 1994, pp. 326–333. IEEE Computer Society Press (1994)Google Scholar
  9. 9.
    Yang, J., Hubball, D., Ward, M., Rundensteiner, E., Ribarsky, W.: Value and relation display: Interactive visual exploration of large data sets with hundreds of dimensions. IEEE Transactions on Visualization and Computer Graphics 13(3), 494–507 (2007)CrossRefGoogle Scholar
  10. 10.
    Team, R.D.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2009), http://www.R-project.org
  11. 11.
    Turkay, C., Parulek, J., Hauser, H.: Dual analysis of DNA microarrays. In: Proceedings of the 12th International Conference on Knowledge Management and Knowledge Technologies, i-KNOW 2012, pp. 26:1–26:8 (2012)Google Scholar
  12. 12.
    Hodneland, E., Ystad, M., Haasz, J., Munthe-Kaas, A., Lundervold, A.: Automated approaches for analysis of multimodal mri acquisitions in a study of cognitive aging. Comput. Methods Prog. Biomed. 106(3), 328–341 (2012)CrossRefGoogle Scholar
  13. 13.
    Ystad, M., Eichele, T., Lundervold, A.J., Lundervold, A.: Subcortical functional connectivity and verbal episodic memory in healthy elderly – a resting state fmri study. NeuroImage 52(1), 379–388 (2010)CrossRefGoogle Scholar
  14. 14.
    Wechsler, D.: Wechsler abbreviated scale of intelligence. Psychological Corporation (1999)Google Scholar
  15. 15.
    Delis, D.C.: California verbal learning test. Psychological Corporation (2000)Google Scholar
  16. 16.
    Wechsler, D.: Wechsler adult iintelligence scale-iii (wais-iii). Psychological Corporation, San Antonio (1997)Google Scholar
  17. 17.
    Delis, D.C., Kaplan, E., Kramer, J.H.: Delis-Kaplan executive function system. Psychological Corporation (2001)Google Scholar
  18. 18.
    Reitan, R., Davison, L.: Clinical neuropsychology: current status and applications. Series in Clinical and Community Psychology. Winston (1974)Google Scholar
  19. 19.
  20. 20.
    Scheffer, J.: Dealing with missing data. Research Letters in the Information and Mathematical Sciences 3(1), 153–160 (2002)Google Scholar
  21. 21.
    Sullivan, E.V., Rosenbloom, M., Serventi, K.L., Pfefferbaum, A.: Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiology of Aging 25(2), 185–192 (2004)CrossRefGoogle Scholar
  22. 22.
    Walhovd, K.B., Fjell, A.M., Reinvang, I., Lundervold, A., Dale, A.M., Eilertsen, D.E., Quinn, B.T., Salat, D., Makris, N., Fischl, B.: Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging 26(9), 1261–1270 (2005)CrossRefGoogle Scholar
  23. 23.
    Hawkins, D.M., et al.: The problem of overfitting. Journal of Chemical Information and Computer Sciences 44(1), 1–12 (2004)Google Scholar
  24. 24.
    Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 1137–1145. Lawrence Erlbaum Associates Ltd. (1995)Google Scholar
  25. 25.
    Chan, Y.H., Correa, C.D., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 43–50. IEEE (2010)Google Scholar
  26. 26.
    Johansson, J., Ljung, P., Jern, M., Cooper, M.: Revealing structure within clustered parallel coordinates displays. In: IEEE Symposium on Information Visualization, INFOVIS 2005, pp. 125–132 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cagatay Turkay
    • 1
  • Arvid Lundervold
    • 2
  • Astri Johansen Lundervold
    • 3
  • Helwig Hauser
    • 1
  1. 1.Department of InformaticsUniversity of BergenNorway
  2. 2.Department of BiomedicineUniversity of BergenNorway
  3. 3.Department of Biological and Medical PsychologyUniversity of BergenNorway

Personalised recommendations