Characteristics of UI English: From Non-native’s Viewpoint

  • Ryutaro Nishino
  • Kayoko Nohara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8023)


Multicultural aspects of user interfaces (UIs) have been studied for years. However, the characteristics of UI English from the viewpoint of non-native speakers of English have not been discussed widely. This study compares a UI English corpus with general English corpora using the word list coverage method and the lexical diversity method. It finds that UI English contains more words that are above introductory level but that it is less diverse than general English. Therefore, for non-natives to use software smoothly, they need to learn a relatively limited number of words that frequently appear in UIs.


English non-native user interface UI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Business Software Alliance: Free & Fair Trade, (accessed on February 11, 2013)
  2. 2.
    del Galdo, E.: Culture and Design. In: del Galdo, E., Nielsen, J. (eds.) International User Interfaces, pp. 74–87. Wiley Computer Publishing, John Wiley & Sons (1996)Google Scholar
  3. 3.
    Esselink, B.: A Practical Guide to Localization. Benjamins, John Publishing Company (2000)Google Scholar
  4. 4.
    Russo, P., Boor, S.: How Fluent is Your Interface?: Designing for International Users. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI 1993, pp. 342–347. ACM Press, New York (1993)Google Scholar
  5. 5.
    Barber, W., Badre, A.: Culturability: The merging of culture and usability. In: Proceedings of the 4th Conference on Human Factors and the Web, pp. 1–14 (1998)Google Scholar
  6. 6.
    Marcus, A., Gould, E.W.: Crosscurrents: cultural dimensions and global Web user-interface design. Interactions 7, 32–46 (2000)CrossRefGoogle Scholar
  7. 7.
    Nielsen, J., del Galdo, E., Sprung, R., Sukaviriya, P.: Designing for international use (panel). In: Nielsen, J. (ed.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 291–294. ACM, New York (1990)Google Scholar
  8. 8.
    Apple Inc.: Apple Publications Style Guide, (accessed on February 24, 2013)
  9. 9.
    Microsoft Corporation: Microsoft Manual of Style 4th edn. Microsoft Press, Redmond (2012)Google Scholar
  10. 10.
    DeRespinis, F., Hayward, P., Jenkins, J., Laird, A., McDonald, L., Radziski, E.: The IBM Style Guide: Conventions for Writers and Editors. IBM Press, Upper Saddle River (2011)Google Scholar
  11. 11.
    West, M.: A general service list of English words, with semantic frequencies and a supplementary word-list for the writing of popular science and technology. Longman, London (1953)Google Scholar
  12. 12.
    Coxhead, A.: A New Academic Word List. TESOL Quarterly 34, 213–238 (2000)CrossRefGoogle Scholar
  13. 13.
    Nation, P.: A study of the most frequent word families in the British National Corpus. In: Bogaards, P., Laufer, B. (eds.) Vocabulary in a Second Language: Selection, Acquisition, and Testing, pp. 3–13. John Benjamins Publishing Company, Amsterdam (2004)Google Scholar
  14. 14.
    Konstantakis, N.: Creating a business word list for teaching Business English. Elia 7, 79–102 (2007)Google Scholar
  15. 15.
    Millar, N., Budgell, B.S.: The language of public health—a corpus-based analysis. Journal of Public Health 16, 369–374 (2008)CrossRefGoogle Scholar
  16. 16.
    Nation, P.: How Large a Vocabulary is Needed For Reading and Listening? Canadian Modern Language Review 63, 59–82 (2006)Google Scholar
  17. 17.
  18. 18.
    Šišková, Z.: Lexical Richness in EFL Students’ Narratives. Language Studies Working Papers 4, 26–36 (2012)Google Scholar
  19. 19.
    Tweedie, F., Baayen, R.H.: How Variable a Constant be? Measures of Lexical Richness in Perspective. Computers and the Humanities 32, 323–352 (1998)CrossRefGoogle Scholar
  20. 20.
    Guiraud, P.: Les caractères statistiques du vocabulaire: essai de méthodologie. Presses Universitaires de France, Paris (1954)Google Scholar
  21. 21.
    Herdan, G.: Type-token mathematics: a textbook of mathematical linguistics. Mouton & Co., The Hague (1960)zbMATHGoogle Scholar
  22. 22.
    Baayen, R.H.: Analyzing Linguistic Data: A Practical Introduction to Statistics using R. Cambridge University Press (2008)Google Scholar
  23. 23.
    Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19, 61–74 (1993)Google Scholar
  24. 24.
    Kilgarriff, A.: Comparing corpora. International Journal of Corpus Linguistics 6, 97–133 (2001)CrossRefGoogle Scholar
  25. 25.
    Chujo, K., Utiyama, M.: Selecting level-specific BNC applied science vocabulary using statistical measures. In: Selected Papers from the Fourteenth International Symposium on English Teaching, pp. 195–202 (2005)Google Scholar
  26. 26.
    Android Git repositories, (accessed on July 31, 2012)
  27. 27.
    Microsoft Language Portal, (accessed on August 01, 2012).
  28. 28.
    Francis, W.N., Kučera, H.: Manual of Information to Accompany A Standard Corpus of Present-Day Edited American English, for use with Digital Computers (1979), (accessed on January 14, 2013)
  29. 29.
    Ide, N., Fellbaum, C., Baker, C., Passonneau, R.: The manually annotated sub-corpus: a community resource for and by the people. In: Proceedings of the ACL 2010 Conference Short Papers, pp. 68–73. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  30. 30.
    Tech category of, (accessed on February 24, 2013)
  31. 31.
    Anthony, L.: AntWordProfiler (Version 1.3.1) (Computer Software) (2012),
  32. 32.
    The R Project for Statistical Computing,
  33. 33.
    Baayen, R.H.: languageR (Computer Program) (2011),
  34. 34.
    Anthony, L.: AntConc (Version 3.3.5) (Computer Software) (2012),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ryutaro Nishino
    • 1
  • Kayoko Nohara
    • 1
  1. 1.Tokyo Institute of TechnologyTokyoJapan

Personalised recommendations