Analysis of the Schrödinger Operator in the Context of Graph Characterization

  • Pablo Suau
  • Edwin R. Hancock
  • Francisco Escolano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7953)

Abstract

In this paper, we apply the solution of the Schrödinger equation, i.e. the Schrödinger operator, to the graph characterization problem. The motivation behind this approach is two-fold. Firstly, the mathematically similar heat kernel has been used in the past for this same problem. And secondly, due to the quantum nature of the Schrödinger equation, our hypothesis is that it may be capable of providing richer sources of information. The two main features of the Schrödinger operator that we exploit in this paper are its non-ergodicity and the presence of quantum interferences due to the existence of complex amplitudes with both positive and negative components. Our proposed graph characterization approach is based on the Fourier analysis of the quantum equivalent of the heat flow trace, thus relating frequency to structure. Our experiments, performed both on synthetic and real-world data, demonstrate that this new method can be successfully applied to the characterization of different types of graph structures.

Keywords

graph characterization heat flow Schrödinger equation quantum walks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, F., Wilson, R.C., Hancock, E.R.: Graph Characterization via Backtrackless Paths. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 149–162. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Peng, R., Wilson, R.C., Hancock, E.R.: Graph Characterization vi Ihara Coefficients. IEEE Transactions on Neural Networks 22(2), 233–245 (2011)CrossRefGoogle Scholar
  3. 3.
    Das, K.C.: Extremal Graph Characterization from the Bounds of the Spectral Radius of Weighted Graphs. Applied Mathematics and Computation 217(18), 7420–7426 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Escolano, F., Hancock, E.R., Lozano, M.A.: Heat Diffusion: Thermodynamic Depth Complexity of Networks. Physical Review E 85(3), 036206(15) (2012)Google Scholar
  5. 5.
    Xiao, B., Hancock, E.R., Wilson, R.C.: Graph Characteristics from the Heat Kernel Trace. Pattern Reognition 42(11), 2589–2606 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Aubry, M., Schlickewei, U., Cremers, D.: The Wave Kernel Signature: A Quantum Mechanical Approach To Shape Analysis. In: IEEE International Conference on Computer Vision (ICCV), Workshop on Dynamic Shape Capture and Analysis (4DMOD) (2011)Google Scholar
  7. 7.
    Rossi, L., Torsello, A., Hancock, E.R.: Approximate Axial Symmetries from Continuous Time Quantum Walks. In: Gimel’farb, G., Hancock, E., Imiya, A., Kuijper, A., Kudo, M., Omachi, S., Windeatt, T., Yamada, K. (eds.) SSPR&SPR 2012. LNCS, vol. 7626, pp. 144–152. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Emms, D., Wilson, R.C., Hancock, E.R.: Graph Embedding Using Quantum Commute Times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Farhi, E., Gutmann, S.: Quantum Computation and Decision Trees. Physical Review A 58, 915–928 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erdös, P., Rényi, A.: On Random Graphs. I. Publicationes Mathematicae 6, 290–297 (1959)MATHGoogle Scholar
  11. 11.
    Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  13. 13.
    Han, L., Escolano, F., Hancock, E., Wilson, R.: Grapph Characterizations From Von Neumann Entropy. Pattern Recognition Letters 33(15), 1958–1967 (2012)CrossRefGoogle Scholar
  14. 14.
    Estrada, E.: Quantifying Network Heterogeneity. Physical Review E 82(6), 066102 (2010)Google Scholar
  15. 15.
    Estrada, E.: Network Robustness to Targeted Attacks. The Interplay of Expansibility and Degree Distribution. The European Physical Journal B - Condensed Matter and Complex Systems 52(4), 563–574 (2006)CrossRefMATHGoogle Scholar
  16. 16.
    Antiqueira, L., Rodrigues, F.A., Costa, L.F.: Modeling Connectivity in terms of Network Activity. J. Stat. Mech., L09005 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pablo Suau
    • 1
  • Edwin R. Hancock
    • 2
  • Francisco Escolano
    • 1
  1. 1.Mobile Vision Research LabUniversity of AlicanteSpain
  2. 2.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations