Cluster-Based Prediction of Mathematical Learning Patterns

  • Tanja Käser
  • Alberto Giovanni Busetto
  • Barbara Solenthaler
  • Juliane Kohn
  • Michael von Aster
  • Markus Gross
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7926)


This paper introduces a method to predict and analyse students’ mathematical performance by detecting distinguishable subgroups of children who share similar learning patterns. We employ pairwise clustering to analyse a comprehensive dataset of user interactions obtained from a computer-based training system. The available data consist of multiple learning trajectories measured from children with developmental dyscalculia, as well as from control children. Our online classification algorithm allows accurate assignment of children to clusters early in the training, enabling prediction of learning characteristics. The included results demonstrate the high predictive power of assignments of children to subgroups, and the significant improvement in prediction accuracy for short- and long-term performance, knowledge gaps, overall training achievements, and scores of further external assessments.


feature processing pairwise clustering prediction learning dyscalculia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amershi, S., Conati, C.: Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments. Journal of Educational Data Mining, 18–71 (2009)Google Scholar
  2. 2.
    Baker, R.S.J.d., Pardos, Z.A., Gowda, S.M., Nooraei, B.B., Heffernan, N.T.: Ensembling predictions of student knowledge within intelligent tutoring systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 13–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Baschera, G.M., Gross, M.: Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training. International Journal of AIED 20(4), 333–360 (2010)Google Scholar
  4. 4.
    Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. UMUAI 4, 253–278 (1994)Google Scholar
  5. 5.
    Gong, Y., Beck, J.E., Ruiz, C.: Modeling multiple distributions of student performances to improve predictive accuracy. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 102–113. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Gross, M., Vögeli, C.: A Multimedia Framework for Effective Language Training. Computer & Graphics 31, 761–777 (2007)CrossRefGoogle Scholar
  7. 7.
    Haffner, J., Baro, K., Parzer, P., Resch, F.: Heidelberger Rechentest (HRT): Erfassung mathematischer Basiskomptenzen im Grundschulalter (2005)Google Scholar
  8. 8.
    Haghir Chehreghani, M., Busetto, A.G., Buhmann, J.M.: Information theoretic model validation for spectral clustering. In: Proc. AISTATS, pp. 495–503 (2012)Google Scholar
  9. 9.
    Hofmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 1–14 (1997)CrossRefGoogle Scholar
  10. 10.
    Kardan, S., Conati, C.: A framework for capturing distinguishing user interaction behaviours in novel interfaces. In: Proc. EDM, pp. 159–168 (2011)Google Scholar
  11. 11.
    Käser, T., Kucian, K., Ringwald, M., Baschera, G.M., von Aster, M., Gross, M.: Therapy software for enhancing numerical cognition. In: Interdisciplinary Perspectives on Cognition, Education and the Brain, vol. 7, pp. 219–228 (2011)Google Scholar
  12. 12.
    Käser, T., Busetto, A.G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., Gross, M.: Modelling and optimizing the process of learning mathematics. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 389–398. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Kast, M., Meyer, M., Vögeli, C., Gross, M., Jäncke, L.: Computer-based Multisensory Learning in Children with Developmental Dyslexia. Restorative Neurology and Neuroscience 25(3-4), 355–369 (2007)Google Scholar
  14. 14.
    King, W., Giess, S., Lombardino, L.: Subtyping of children with developmental dyslexia via bootstrap aggregated clustering and the gap statistic: comparison with the double-deficit hypothesis. Int. J. Lang. Comm. Dis. 42(1), 77–95 (2007)CrossRefGoogle Scholar
  15. 15.
    Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin, E., von Aster, M.: Mental Number Line Training in Children with Developmental Dyscalculia. NeuroImage 57(3), 782–795 (2011)CrossRefGoogle Scholar
  16. 16.
    Mislevy, R.J., Almond, R.G., Yan, D., Steinberg, L.S.: Bayes nets in educational assessment: Where the numbers come from. In: Proc. UAI, p. 518 (1999)Google Scholar
  17. 17.
    Pardos, Z.A., Gowda, S.M., Baker, R.S., Heffernan, N.T.: The sum is greater than the parts: ensembling models of student knowledge in educational software. SIGKDD Explor. Newsl. 13(2), 37–44 (2012)CrossRefGoogle Scholar
  18. 18.
    Pardos, Z.A., Trivedi, S., Heffernan, N.T., Sárközy, G.N.: Clustered knowledge tracing. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 405–410. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis - a new alternative to knowledge tracing. In: Proc. AIED, pp. 531–538 (2009)Google Scholar
  20. 20.
    Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the number of clusters. In: Proc. ICML, pp. 727–734 (2000)Google Scholar
  21. 21.
    Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of non-metric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1540–1551 (2003)CrossRefGoogle Scholar
  22. 22.
    Trivedi, S., Pardos, Z.A., Heffernan, N.T.: Clustering students to generate an ensemble to improve standard test score predictions. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 377–384. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Trivedi, S., Pardos, Z.A., Sárközy, G.N., Heffernan, N.T.: Co-clustering by bipartite spectral graph partitioning for out-of-tutor prediction. In: Proc. EDM, pp. 33–40 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tanja Käser
    • 1
  • Alberto Giovanni Busetto
    • 1
    • 2
  • Barbara Solenthaler
    • 1
  • Juliane Kohn
    • 4
  • Michael von Aster
    • 3
    • 4
    • 5
  • Markus Gross
    • 1
  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland
  2. 2.Competence Center for Systems Physiology and Metabolic DiseasesZurichSwitzerland
  3. 3.Center for MR-ResearchUniversity Children’s HospitalZurichSwitzerland
  4. 4.Department of PsychologyUniversity of PotsdamPotsdamGermany
  5. 5.Department of Child and Adolescent PsychiatryGerman Red Cross Hospitals WestendBerlinGermany

Personalised recommendations