Individualized Bayesian Knowledge Tracing Models

  • Michael V. Yudelson
  • Kenneth R. Koedinger
  • Geoffrey J. Gordon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7926)


Bayesian Knowledge Tracing (BKT)[1] is a user modeling method extensively used in the area of Intelligent Tutoring Systems. In the standard BKT implementation, there are only skill-specific parameters. However, a large body of research strongly suggests that student-specific variability in the data, when accounted for, could enhance model accuracy [5,6,8]. In this work, we revisit the problem of introducing student-specific parameters into BKT on a larger scale. We show that student-specific parameters lead to a tangible improvement when predicting the data of unseen students, and that parameterizing students’ speed of learning is more beneficial than parameterizing a priori knowledge.


Bayesian knowledge tracing model fitting model selection student-specific model parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278 (1995)CrossRefGoogle Scholar
  2. 2.
    Levinson, S.E., Rabiner, L.R., Sondhi, M.M.: An Introduction to the Application of the Theory of Probabilistic Functions of a Markov Process to Automatic Speech Recognition. Bell System Technical Journal 62(4), 1035–1074 (1983)MathSciNetzbMATHGoogle Scholar
  3. 3.
    van der Linden, W.J., Hambleton, R.K.: Handbook of Modern Item Response Theory. Springer, New York (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Yudelson, M., Pavlik Jr., P.I., Koedinger, K.R.: User Modeling – A Notoriously Black Art. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 317–328. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Pardos, Z.A., Heffernan, N.T.: Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Cen, H., Koedinger, K.R., Junker, B.: Comparing Two IRT Models for Conjunctive Skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Baker, R.S.J., Corbett, A.T., Aleven, V.: More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Lee, J.I., Brunskill, E.: The Impact on Individualizing Student Models on Necessary Practice Opportunities. In: Yacef, K., Zaïane, O.R., Hershkovitz, A., Yudelson, M., Stamper, J.C. (eds.) Proceedings of the 5th International Conference on Educational Data Mining (EDM 2012), pp. 118–125 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael V. Yudelson
    • 1
  • Kenneth R. Koedinger
    • 1
  • Geoffrey J. Gordon
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations