Assistance in Building Student Models Using Knowledge Representation and Machine Learning

  • Sébastien Lallé
  • Vanda Luengo
  • Nathalie Guin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7926)


We propose a method and a first authoring tool to assist the design and implementation of diagnostic techniques. This method is independent from the domain and allows building more than one technique at once. The method is based on knowledge representation and a semi-automatic machine learning algorithm. We tested the method in two domains, surgery and reading English. Techniques built with our method beat the majority class in terms of accuracy.


Knowledge diagnostic authoring tool machine learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor authoring tools (CTAT): Preliminary evaluation of efficiency gains. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 61–70. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Beck, J.E., Woolf, J.E., Beal, C.R.: ADVISOR: a machine-learning architecture for intelligent tutor construction. In: 17th AAAI Conference on Artificial Intelligence, pp. 552–557 (2000)Google Scholar
  3. 3.
    Cen, H., Koedinger, K., Junker, B.: Comparing two IRT models for conjunctive skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modelling and User-Adapted Interaction 4, 253–278 (1995)CrossRefGoogle Scholar
  5. 5.
    Desmarais, M.C., Meshkinfam, P., Gagnon, M.: Learned student models with item to item knowledge structures. User Modeling and User-Adapted Interaction 16(5), 403–434 (2006)CrossRefGoogle Scholar
  6. 6.
    Gong, Y., Beck, J.E., Heffernan, N.T.: How to Construct More Accurate Student Models: Comparing and Optimizing Knowledge Tracing and Performance Factor Analysis. International Journal of Artificial Intelligence in Education 21(1), 27–46 (2011)Google Scholar
  7. 7.
    Gonzales-Brenes, J., Mostow, J.: Dynamic Cognitive Tracing: Towards Unified Discovery of Student and Cognitive Models. In: 5th International Conference on Educational Data Mining, pp. 49–56 (2012)Google Scholar
  8. 8.
    Minh Chieu, V., Luengo, V., Vadcard, L., Tonetti, J.: Student modeling in complex domains: Exploiting symbiosis between temporal Bayesian networks and fine-grained didactical analysis. International Journal of Artificial Intelligence in Education 20(3), 269–301 (2010)Google Scholar
  9. 9.
    Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J.: Authoring constraint-based tutors in ASPIRE. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 41–50. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mostow, J., Aist, G.: Evaluating tutors that listen: An overview of Project LISTEN. In: Smart Machines in Education, pp. 169–234. MIT/AAAI Press (2001)Google Scholar
  11. 11.
    Murray, T.: Eon: Authoring tools for content, instructional strategy, student model, and interface design. In: Authoring Tools for Advanced Technology Learning Environments, pp. 309–340 (2003)Google Scholar
  12. 12.
    Ohlsson, S.: Constraint-based student modeling. NATO ASI Series F Computer and Systems Sciences 125, 167–189 (1994)Google Scholar
  13. 13.
    Sison, R., Shimura, M.: Student modeling and machine learning. International Journal of Artificial Intelligence in Education 9(1-2), 128–158 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sébastien Lallé
    • 1
    • 2
  • Vanda Luengo
    • 1
  • Nathalie Guin
    • 2
  1. 1.LIG METAHJoseph Fourier UniversityGrenobleFrance
  2. 2.LIRIS, UMR5205Université de Lyon, CNRS Université Lyon 1France

Personalised recommendations