Advertisement

Climate Change Impacts on the Water Sector

  • Helmut LehnEmail author
  • Laura Margarete Simon
  • Melanie Oertel
Chapter

Abstract

The regional impacts of global climate and socio-economic change will heavily influence the future balance of water availability (supply side) and water demand in the Metropolitan Region of Santiago de Chile (MRS). Reduced run-off in the Maipo-Mapocho river catchment coupled with natural precipitation variability will pose a major challenge for water resource management in the coming years. This chapter elaborates on an impact assessment for the year 2050, which combines two climate scenarios for the supply side with two explorative socio-economic scenarios for the demand side. While adaptive measures for water supplies also involve increasing water storage or recycling grey water in the urban area, adaptive options for water demand focus on upgrading water efficiency in both agriculture and private domestic households. In addition to technical aspects, institutional/policy-based matters and capacity development measures are considered.

Keywords

Climate change Regional impacts Water supply Water demand Scenarios Adaptation Santiago de Chile 

References

  1. Barton, J., Kopfmüller, J., & Stelzer, V. (2011a). Project ‘ClimateAdaptationSantiago’ (CAS): Quantitative variables: Tendencies and scenario estimations 2010–2050. Working Paper.Google Scholar
  2. Barton, J., Kopfmüller, J., & Stelzer, V. (2011b). Project ‘ClimateAdaptationSantiago’ (CAS): Scenario storylines for the RMS. Working Paper.Google Scholar
  3. Bartosch, A. (2007). Die Wasserversorgung in einer Metropolregion in Lateinamerika. Das Beispiel Santiago de Chile. Thesis. Universidad Friedrich-Schiller-Universität Jena.Google Scholar
  4. Bayerische Landesanstalt für Weinbau und Gartenbau. (2007, August). Rasen und Wiese im Hausgarten. Veitshöchheim, leaflet.Google Scholar
  5. Biblioteca del Congreso Nacional de Chile Sistema integrado de Información territorial (SIIT). (2013). Division regional: Polígonos de las regiones de Chile . http://siit2.bcn.cl/mapas_vectoriales/index_html/. Accessed 22 Feb 2013.
  6. Bühringer, H. (2006). Trinkwasserversorgung in Baden-Württemberg. Statistisches Monatsheft Baden-Württemberg, 5, 28–31.Google Scholar
  7. Comisión Nacional de Riego (CNR). (2007). Diagnóstico de Caudales, Disponibles en Cuencas No Controladas de Recuperación. Cuencas Aconcagua y Maipo. Santiago de Chile.Google Scholar
  8. Comisión Nacional de Riego (CNR). (2009). Ley Nº 18.450 de Fomento a la Inversión Privada en Obras de Riego y Drenaje. Santiago de Chile.Google Scholar
  9. Cortés, G., Schaller, S., Rojas, M., Garcia, L., Descalzi, A., Vargas, L., McPhee, J. (2012). Assessment of the current climate and expected climate changes in the Metropolitan Region of Santiago de Chile. UFZ-Report 03/2012, Helmholtz Center for Environmental Research UFZ, Leipzig.Google Scholar
  10. Dirección General de Aguas (DGA). (2007a). Estimaciones de Demanda de Agua y Proyecciones Futuras. Zona II. Regiones V a XII y Región Metropolitana. DGA Publicación S.I.T. Nº123. Santiago de Chile.Google Scholar
  11. Direccíon General de Aguas (DGA). (2007b). Evaluación de la explotación maxima sustentable del acuífero Santiago sur. Santiago de Chile.Google Scholar
  12. Dirección Meteorológica de Chile (DMC). (2012). Anuarios climatológicos 1960-2011. Santiago de Chile.Google Scholar
  13. Döll, P. (2008). Wasser weltweit – Wie groß sind die globalen Süßwasserressourcen, und wie nutzt sie der Mensch? Forschung Frankfurt, 3, 54–59.Google Scholar
  14. Falkenmark, M. (1989). The massive water scarcity threatening Africa – Why isn’t It being addressed? Ambio, 18(2), 112–118.Google Scholar
  15. Hulme, M., Jenkins, G. J., Lu, X., Turnpenny, J. R., Mitchell T. D., Jones, R. G., et al. (2002). Climate change scenarios for the United Kingdom: The UKCIP02 scientific report. Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, UK.Google Scholar
  16. Instituto Nacional de Estadísticas. (2005). Región Metropolitana. Perfil de la dinámica económica regional. Santiago de Chile.Google Scholar
  17. Instituto Nacional de Estadísticas (INE). (2007). VI Censo Agropecuario Nacional, 2007. Santiago de Chile.Google Scholar
  18. Instituto Nacional de Estadísticas. (2008). División político-administrativa y censal, 2007. Santiago de Chile.Google Scholar
  19. Intergovernmental panel on climate change. (2008). Technical paper on climate change and water. http://www.ipcc.ch/pdf/technical-papers/climate-change-wateren.pdf. Accessed 30 July 2012.
  20. Kopfmüller, J., Lehn, H., Nuissl, H., Krellenberg, K., & Heinrichs, D. (2009). Sustainable development of megacities: An integrative research approach for the case of Santiago Metropolitan Region. Die Erde, 140(4), 417–448.Google Scholar
  21. Kulkarni, S. (2011). Innovative technologies for water saving in irrigated agriculture. International Journal of Water Resources and Arid Environments, 1(3), 226–231.Google Scholar
  22. Kurukulasuriya, P., & Rosenthal, S. (2003). Climate change and agriculture: A review of impacts and adaptations world bank climate change series paper no. 91. Paper prepared and published for the Rural Development Group and Environment Department of the World Bank.Google Scholar
  23. Lehn, H., Steiner, M., & Mohr, H. (1996). Wasser – die elementare Ressource. Heidelberg: Leitlinien einer nachhaltigen Nutzung.CrossRefGoogle Scholar
  24. Lehn, H., McPhee, J., Vogdt, J., Schleenstein, G., Simon, L.-M., Strauch, G., et al. (2012). Risks and opportunities for sustainable management of water resources and services in Santiago de Chile. In D. Heinrichs, K. Krellenberg, B. Hansjürgens, & F. Martínez (Eds.), Risk Habitat Megacity (pp. 251–278). Heidelberg: Springer.CrossRefGoogle Scholar
  25. Marcuello, C., & Lallana, C. (2010). Indicator fact sheet (WQ01c) water exploitation index. http://www.eea.europa.eu/data-and-maps/indicators/water-exploitation-index. Accessed 31 July 2012.
  26. Meza, F. J. (2005). Variability of reference evapotranspiration and water demands. Association to ENSO in the Maipo river basin, Chile. Global and Planetary Change, 47, 212–220.CrossRefGoogle Scholar
  27. Moya, L. (2009). Contribución de los Jardines Domésticos Urbanos a la Cobertura Vegetacional de Santiago de Chile. Tesis presentada al instituto de Estudios urbanos y territoriales de la Pontificia Universidad de Catolica de Chile, Santiago de Chile.Google Scholar
  28. Obervatorio de ciudades (OCUC). (2010). Formulación sello de efficiencia hídrica en el paisaje. Santiago de Chile.Google Scholar
  29. Pontificia Universidad Católica de Chile, Centro de Cambio GLOBAL (PUC). (2011). Analysis of agricultural water demands in the Maipo Basin. Technical report. Santiago de Chile.Google Scholar
  30. Ropelowski, C. S., & Halpert, M. S. (1996). Quantifying Southern oscillation-precipitation relationships. Journal of Climate, 9(5), 1043–1059.CrossRefGoogle Scholar
  31. Superintendencia de los servicios Sanitarios (SISS). (2010). Informe de gestión 2009. Santiago de Chile.Google Scholar
  32. Superintendencia de los servicios Sanitarios (SISS). (2011). Informe de gestión 2010. Santiago de Chile.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Helmut Lehn
    • 1
    Email author
  • Laura Margarete Simon
    • 2
  • Melanie Oertel
    • 3
  1. 1.KIT Karlsruhe Institute of Technology, ITAS-Institute for Technology Assessment and Systems AnalysisKarlsruheGermany
  2. 2.Cologne University of Applied Sciences Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)KölnGermany
  3. 3.Pontificia Universidad Católica de Chile Centro Cambio Global Vicuña MackennaMaculChile

Personalised recommendations