Advertisement

A Morphologic Analysis of Cirrhotic Liver in CT Images

  • Yen-Wei Chen
  • Jie Luo
  • Xianhua Han
  • Tomoko Tateyama
  • Akira Furukawa
  • Shuzo Kanasaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7950)

Abstract

Cirrhosis will cause significant morphological changes on both liver and spleen. In this paper, we constructed not only the liver statistical shape models (SSM), but also the spleen SSM and a joint SSM of the liver and the spleen for a morphologic analysis of the cirrhotic liver in CT images. We also proposed a mode selection method based on both its accumulation contribution rate and its correlation with doctor’s opinions (labels). The classification performance for normal and abnormal livers is significantly improved by our proposed method. The classification accuracies for normal and cirrhotic livers are 88% and 90%, respectively.

Keywords

Statistical Shape Model Joint Statistical Shape Model CT Volume Liver Spleen Mode Selection Chronic liver disease Cirrhosis Principle Components Analysis (PCA) Morphologic Changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthony, P.P., et al.: The Morphology of Cirrhosis. Journal of Clinical Pathology 31, 395–414 (1978)CrossRefGoogle Scholar
  2. 2.
    Kohara, S., Tateyama, T., Foruzan, A.H., Furukawa, A., Kanasaki, S., Wakamiya, M., Wei, X., Chen, Y.-W.: Preliminary Study on Statistical Shape Model Applied to Diagnosis of Liver Cirrhosis. In: Proc. of 2011 IEEE International Conference on Image Processing, Brussels, Belguim, pp. 2978–2981 (2011)Google Scholar
  3. 3.
    Chen, Y.-W., Uetani, M., Kohara, S., Tateyama, T., Han, X.-H., Furukawa, A., Kanasaki, S.: Application of Statistical Shape Model of the Liver in Classification of Cirrhosis. International Journal of Digital Content Technology and its Applications (in press, 2013)Google Scholar
  4. 4.
    Chen, Y.-W., Luo, J., Tateyama, T., Han, X.-H., Furukawa, A., Kanasaki, S., Jiang, H.: Statistical Shape Model of the Liver and Effective Mode Selection for Classification of Liver Cirrhosis. In: Proc. of 6th International Conference on New Trends in Information Science, Service Science and Data Mining (ISSDM 2012), Taiwan, pp. 446–449 (2012)Google Scholar
  5. 5.
    Linguraru, M.G., Li, Z., Shah, F., Chin, S., Summers, R.M.: Automated Liver Segmentation using a Normalized Probabilistic Atlas. In: Proc. of SPIE, vol. 7262, 72622R-2 (2009)Google Scholar
  6. 6.
    Lamecker, H., Lange, T., Seebaß, M.: Segmentation of the Liver using a 3D Statistical Shape Model. ZIB-Report 04-09 (2004)Google Scholar
  7. 7.
    Okada, T., Shimada, R., Hori, M., Nakamoto, M., Chen, Y.-W., Nakamaura, H., Sato, Y.: Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model. Academic Radiology V63.15, 1390–1403 (2008)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Computer Graphics (Proceedings of SIGGRAPH 1987), vol. 21(4), pp. 163–170 (1987)Google Scholar
  10. 10.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding In Non Rigid Image Registration 89(2-3), 114–141 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Luo, J., Chen, Y.-W., Tateyama, T., Han, X.-H., Furukawa, A., Kanasaki, S.: Pilot Study of Applying Shape Analysis to Liver Cirrhosis Diagnosis. In: ICIP 2013 (2013) (accepted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yen-Wei Chen
    • 1
    • 2
  • Jie Luo
    • 2
  • Xianhua Han
    • 2
  • Tomoko Tateyama
    • 2
  • Akira Furukawa
    • 3
  • Shuzo Kanasaki
    • 4
  1. 1.College of Computer Science and Information TechnologyCentral South Univ. of Forestry and TechnologyHunanChina
  2. 2.College of Information Science and Eng.Ritsumeikan UniversityShigaJapan
  3. 3.Radiology DepartmentTokyo Metropolitan UniversityTokyoJapan
  4. 4.Radiology DepartmentShiga University of Medical ScienceShigaJapan

Personalised recommendations