Removing Shade and Specular Noise in Images of Objects and Documents Acquired with a 3D-Scanner

  • Rafael Dueire Lins
  • Gabriel de França Pereira e Silva
  • Ednardo Mariano
  • Jian Fan
  • Peter Majewicz
  • Marcelo Thielo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7950)

Abstract

This paper presents an efficient algorithm for removing the specular noise and undesired shades in images of objects and documents acquired with a 3D-Scanner. The basic principle of such device is to photograph objects by taking multiple images with different illumination sources.

Keywords

Specular noise 3D-Scanner illumination sources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn., pp. 68–102, 259–300. Prentice Hall (2008)Google Scholar
  3. 3.
    Landon, G.V., Lin, Y., Seales, W.B.: Towards Automatic Photometric Correction of Casually Illuminated Documents. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  4. 4.
    Liang, J., Doermann, D., Li, H.: Camera-Based Analysis of Text and Documents: A Survey. International Journal on Document Analysis and Recognition (2005)Google Scholar
  5. 5.
    Liang, J., DeMenthon, D., Doermann, D.: Geometric Rectification of Camera-Captured Document Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(4), 591–605Google Scholar
  6. 6.
    Lins, R.D., Pereira e Silva, G.F., Banergee, S., Kuchibhotla, S., Thielo, M.: Automatically Detecting and Classifying Noises in Document Images. In: ACM-SAC 2010, vol. 1, pp. 33–39. ACM Press (2010)Google Scholar
  7. 7.
    Lins, R.D., Gomes e Silva, A.R., Pereira e Silva, G.: Enhancing Document Images Acquired Using Portable Digital Cameras. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1229–1241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Saint-Pierre, C.-A., Boisvert, J., Grimard, G., Cheriet, F.: Detection and correction of specular reflections for automatic surgical tool segmentation in thoracoscopic images. In: Machine Vision and Applications, vol. V22(1), pp. 171–180. Springer (2007)Google Scholar
  9. 9.
    de Oliveira, D.M., Lins, R.D.: Improving the Border Detection and Image Enhancement Algorithms in Tableau. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 1111–1121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Oliveira, D.M., Lins, R.D., Torreão, G., Fan, J., Thielo, M.: A New Method for Text-line Segmentation for Warped Documents. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6112, pp. 398–408. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. v(9), 62–66 (1979)Google Scholar
  12. 12.
    Mariano, E., Lins, R.D., Pereira e Silva, G.F., Fan, J., Majewicz, P., Thielo, M.: Correcting Specular Noise in Multiple Images of Photographed Documents. In: ICDAR 2011 - International Conference on Document Analysis and Recognition, pp. 111–116. IEEE Press, Pequim (2011)Google Scholar
  13. 13.
    ImageJ: http://rsbweb.nih.gov/ij/ (accessed March 20, 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rafael Dueire Lins
    • 1
  • Gabriel de França Pereira e Silva
    • 1
  • Ednardo Mariano
    • 1
  • Jian Fan
    • 2
  • Peter Majewicz
    • 2
  • Marcelo Thielo
    • 3
  1. 1.Universidade Federal de PernambucoRecifeBrazil
  2. 2.HP Labs.Palo AltoUSA
  3. 3.HP Labs.Porto AlegreBrazil

Personalised recommendations