Advertisement

Waving Detection Using the FuzzyBoost Algorithm and Flow-Based Features

  • Plinio Moreno
  • José Santos-Victor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7950)

Abstract

We present an application of the FuzzyBoost learning algorithm, where the weak learners select spatio-temporal groups of features for waving detection. The features encode the spatial distribution of the optic flow of a tracked person, considering the polar sampling of the flow for each instant. The FuzzyBoost algorithm selects groups of features that discriminate better than any single feature, bringing robustness and generalization over the TemporalBoost algorithm.

Keywords

Weak Learner Decision Stump Dimensionality Reduction Algorithm Boost Algorithm Linear Dimensionality Reduction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanfeliu, A., Andrade-Cetto, J.: Ubiquitous networking robotics in urban settings. In: Workshop on Network Robot Systems. Toward Intelligent Robotic Systems Integrated with Environments. Proceedings of IROS 2006 (2006)Google Scholar
  2. 2.
    Moreno, P., Bernardino, A., Santos-Victor, J.: Waving detection using the local temporal consistency of flow-based features for real-time applications. In: Kamel, M., Campilho, A. (eds.) ICIAR 2009. LNCS, vol. 5627, pp. 886–895. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Ribeiro, P.C., Moreno, P., Santos-Victor, J.: Boosting with temporal consistent learners: An application to human activity recognition. In: Bebis, G., et al. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 464–475. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Moreno, P., Ribeiro, P. C., Santos-Victor, J.: Feature set search space for fuzzyBoost learning. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 248–255. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)Google Scholar
  6. 6.
    Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 32–36 (2004)Google Scholar
  7. 7.
    Ke, Y., Sukthankar, R., Hebert, M.: Spatio-temporal shape and flow correlation for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)Google Scholar
  8. 8.
    Yao, A., Gall, J., Van Gool, L.: A hough transform-based voting framework for action recognition. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2061–2068 (2010)Google Scholar
  9. 9.
    Ogale, A.S., Aloimonos, Y.: A roadmap to the integration of early visual modules. International Journal of Computer Vision 72(1), 9–25 (2007)CrossRefGoogle Scholar
  10. 10.
    Boult, T.E., Micheals, R.J., Gao, X., Eckmann, M.: Into the woods: Visual surveillance of noncooperative and camouflaged targets in complex outdoor settings. Proceedings of the IEEE 89(10), 1382–1402 (2001)CrossRefGoogle Scholar
  11. 11.
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall (1993)Google Scholar
  12. 12.
    Pla, F., Ribeiro, P., Santos-Victor, J., Bernardino, A.: Extracting motion features for visual human activity representation. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 537–544. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Torralba, A., Murphy, K., Freeman, W.: Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(5), 854–869 (2007)CrossRefGoogle Scholar
  14. 14.
    Ribeiro, P., Moreno, P., Santos-Victor, J.: Introducing fuzzy decision stumps in boosting through the notion of neighbourhood. Computer Vision, IET 6(3), 214–223 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)zbMATHGoogle Scholar
  16. 16.
    Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 166–173 (2005)Google Scholar
  17. 17.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. International Journal of Computer Vision 79(3), 299–318 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Plinio Moreno
    • 1
  • José Santos-Victor
    • 1
  1. 1.Instituto Superior Técnico and Instituto de Sistemas e RobóticaLisboaPortugal

Personalised recommendations