Color Correction Problem of Image Displayed on Non-white Projection Screen

  • Abdeldjalil Madi
  • Djemel Ziou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7950)


The use of projectors in various applications and environments has raised the need to adapt the displayed image to the viewing display environment. The displayed image under bright light may appear with washed colors and attenuated contrast. Similarly, the appearance of the displayed image may be affected by the reflectance and the geometry of the projection screen. Based on the model of the perceived image formation, we formulate the problem of the color correction using the constancy between the perceived image and its original one. We verify through formal and empirical validations that the proposed method significantly preserves the image’s color.


Illuminant screen reflectance projector color 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossberg, M.D., Peri, H., Nayar, S.K., Belhumeur, P.N.: Making One Object Look Like Another:Controlling Appearance Using a Projector-Camera System. In: CVPR (2001)Google Scholar
  2. 2.
    Nayar, S.K., Peri, H., Grossberg, M.D., Belhumeur, P.N.: A projection system with radiometric compensation for screen imperfections. In: ICCV Workshop on PROCAMS (2003)Google Scholar
  3. 3.
    Ashdown, M., Okabe, T., Sato, I., Sato, Y.: Robust Content-Dependent Photometric Projector Compensation. In: Workshop on CVRP (2006)Google Scholar
  4. 4.
    Anselm, G., Oliver, B.: Real-Time Adaptive Radiometric Compensation. IEEE Trans on Visualization and Computer Graphics 14, 97–108 (2008)CrossRefGoogle Scholar
  5. 5.
    Yusuke, M., Haruo, Y., Toshiharu, K., Hiroaki, K.: Fadeless Image Projection Preserving Local Contrast Under Ambient Light. In: CIC (2004)Google Scholar
  6. 6.
    Kate, D., Alan, C., Erik, R.: Visual calibration and correction for ambient illumination. ACM Trans. Appl. Percept. 3, 429–452 (2006)CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Wandell, B.A.: A Spatial Extension of CIELAB for Digital Color Image Reproduction (1996)Google Scholar
  8. 8.
    Yoshida, T., Horii, C., Sato, K.: A Virtual Color Reconstruction System for Real Heritage With Light Projection. In: VSMM (2003)Google Scholar
  9. 9.
    Penrose, R.: A generalized inverse for matrice. Mathematical Proceedings of The Cambridge Philosophical Society 51, 406–413 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Finlayson, G.D., Drew, M.S., Funt, B.V.: Spectral sharpening: sensor transformations for improved color constancy. Optical Society of America 11, 1553–1563 (1994)CrossRefGoogle Scholar
  11. 11.
    Lee, M.-H., Park, H., Park, J.-I.: Color Correction Using a Still Camera for Images Projected onto a Light Colored Screen. Journal of Imaging Science and Technology 55, 1–13 (2011)zbMATHGoogle Scholar
  12. 12.
    Xinli, C., Xubo, Y., Shuangjiu, X., Mengr, L.: Color mixing property of a projector-camera system. In: Workshop on PROCAMS, vol. 34, pp. 1509–1519 (2008)Google Scholar
  13. 13.
    Madi, A., Ziou, D.: Controlling Environmental Effects for Projector Displayed Image. Université de SherbrookeGoogle Scholar
  14. 14.
    Hornbeck, L.J.: Digital Light Processing: A New MEMS-Based Display Technology. ITexas Instrument, Inc.Google Scholar
  15. 15.
    Hore, A., Ziou, D.: Image Quality Metrics: PSNR vs. SSIM. ICPR 34, 2366–2369 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abdeldjalil Madi
    • 1
  • Djemel Ziou
    • 1
  1. 1.Département d’InformatiqueUniversité de SherbrookeSherbrookeCanada

Personalised recommendations