Chain Graph Interpretations and Their Relations

  • Dag Sonntag
  • Jose M. Peña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7958)


This paper deals with different chain graph interpretations and the relations between them in terms of representable independence models. Specifically, we study the Lauritzen-Wermuth-Frydenberg, Andersson-Madigan-Pearlman and multivariate regression interpretations and present the necessary and sufficient conditions for when a chain graph of one interpretation can be perfectly translated into a chain graph of another interpretation. Moreover we also present a feasible split for the Andersson-Madigan-Pearlman interpretation with similar features as the feasible splits presented for the other two interpretations.


Chain Graphs Lauritzen-Wermuth-Frydenberg interpretation Andersson-Madigan-Pearlman interpretation multivariate regression interpretation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, S.A., Madigan, D., Pearlman, M.D.: A Characterization of Markov Equivalence Classes for Acyclic Digraphs. Annals of Statistics 25(2), 505–541 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Andersson, S.A., Madigan, D., Pearlman, M.D.: An Alternative Markov Property for Chain Graphs. Scandianavian Journal of Statistics 28, 33–85 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cox, D.R., Wermuth, N.: Linear Dependencies Represented by Chain Graphs. Statistical Science 8, 204–283 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cox, D.R., Wermuth, N.: Multivariate Dependencies: Models, Analysis and Interpretation. Chapman and Hall (1996)Google Scholar
  5. 5.
    Drton, M.: Discrete Chain Graph Models. Bernoulli 15(3), 736–753 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Frydenberg, M.: The Chain Graph Markov Property. Scandinavian Journal of Statistics 17, 333–353 (1990)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Lauritzen, S.L., Wermuth, N.: Graphical Models for Association Between Variables, Some of Which are Qualitative and Some Quantitative. Annals of Statistics 17, 31–57 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Roverto, A., Studený, M.: A Graphical Representation of Equivalence Classes of AMP Chain Graphs. Journal of Machine Learning Research 7(6), 1045–1078 (2006)Google Scholar
  9. 9.
    Sonntag, D., Peña, J.M.: Learning Multivariate Regression Chain Graphs under Faithfulness. In: Proceedings of the 6th European Workshop on Probabilistic Graphical Models, pp. 299–306 (2012)Google Scholar
  10. 10.
    Studený, M., Roverto, A., Štěpánová, Š.: Two Operations of Merging and Splitting Components in a Chain Graph. Kybernetika 45, 208–248 (1997)Google Scholar
  11. 11.
    Wermuth, N., Sadeghi, K.: Sequences of Regression and their Indepdendences. TEST 21(2), 215–252 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Wermuth, N., Wiedenbeck, M., Cox, D.: Partial Inversion for Linear Systems and Partial Closure of Independence Graphs. BIT Numerical Mathematics 46, 883–901 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dag Sonntag
    • 1
  • Jose M. Peña
    • 1
  1. 1.ADIT, IDALinköping UniversitySweden

Personalised recommendations