Structural Properties for Deductive Argument Systems

  • Anthony Hunter
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7958)


There have been a number of proposals for using deductive arguments for instantiating abstract argumentation. These take a set of formulae as a knowledgebase, and generate a graph where each node is a logical argument and each arc is a logical attack. This then raises the question of whether for a specific logical argument system S, and for any graph G, there is a knowledgebase such that S generates G. If it holds, then it can be described as a kind of “structural” property of the system. If it fails then, it means that there are situations that cannot be captured by the system. In this paper, we explore some features, and the significance, of such structural properties.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cayrol, C.: On the relation between argumentation and non-monotonic coherence-based entailment. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 1443–1448 (1995)Google Scholar
  2. 2.
    Pollock, J.: Defeasible reasoning. Cognitive Science 11(4), 481–518 (1987)CrossRefGoogle Scholar
  3. 3.
    Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128, 203–235 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Mathematics and Artificial Intelligence 34, 197–215 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: Postulates and properties. Artif. Intell. 175(9-10), 1479–1497 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Black, E., Hunter, A., Pan, J.Z.: An argument-based approach to using multiple ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 68–79. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    García, A., Simari, G.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming 4, 95–138 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hunter, A.: Base logics in argumentation. In: Proceedings of the 3rd Conference on Computational Models of Argument (COMMA 2010). Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 275–286. IOS Press (2010)Google Scholar
  9. 9.
    Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artif. Intell. 77, 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dunne, P.: Computational properties of argument systems satisfying graph-theoretic constraints. Artif. Intell. 171(10-15), 701–729 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 317–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Dvořák, W., Szeider, S., Woltran, S.: Abstract argumentation via monadic second order logic. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 85–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Dvorák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for abstract argumentation. Artif. Intell. 186, 1–37 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    Pollock, J.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Elvang-Gøransson, M., Krause, P., Fox, J.: Acceptability of arguments as ‘logical uncertainty’. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747, pp. 85–90. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Elvang-Gøransson, M., Hunter, A.: Argumentative logics: Reasoning with classically inconsistent information. Data & Knowledge Engineering 16(2), 125–145 (1995)CrossRefGoogle Scholar
  17. 17.
    Takahashi, T., Sawamura, H.: A logic of multiple-valued argumentation. In: Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 800–807. IEEE Computer Society (2004)Google Scholar
  18. 18.
    Alsinet, T., Chesñevar, C., Godo, L., Simari, G.: A logic programming framework for possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems 159(10), 1208–1228 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Augusto, J., Simari, G.: Temporal defeasible reasoning. Knowledge and Information Systems 3(3), 287–318 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Mann, N., Hunter, A.: Argumentation using temporal knowledge. In: Proceedings of the 2nd Conference on Computational Models of Argument (COMMA 2008). Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 204–215. IOS Press (2008)Google Scholar
  21. 21.
    Krause, P., Ambler, S., Elvang-Gøransson, M., Fox, J.: A logic of argumentation for reasoning under uncertainty. Computational Intelligence 11, 113–131 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fox, J., Das, S.: Safe and Sound: Artificial Intelligence in Hazardous Applications. MIT Press (2000)Google Scholar
  23. 23.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Computation 1, 93–124 (2010)CrossRefGoogle Scholar
  24. 24.
    Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for assumption-based admissible argumentation. Artificial Intelligence 170, 114–159 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anthony Hunter
    • 1
  • Stefan Woltran
    • 2
  1. 1.Department of Computer ScienceUniversity College LondonLondonUK
  2. 2.Institute of Information Systems 184/2Technische Universität WienViennaAustria

Personalised recommendations