Advertisement

Zero-Probability and Coherent Betting: A Logical Point of View

  • Tommaso Flaminio
  • Lluis Godo
  • Hykel Hosni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7958)

Abstract

The investigation reported in this paper aims at clarifying an important yet subtle distinction between (i) the logical objects on which measure theoretic probability can be defined, and (ii) the interpretation of the resulting values as rational degrees of belief. Our central result can be stated informally as follows. Whilst all subjective degrees of belief can be expressed in terms of a probability measure, the converse doesn’t hold: probability measures can be defined over linguistic objects which do not admit of a meaningful betting interpretation. The logical framework capable of expressing this will allow us to put forward a precise formalisation of de Finetti’s notion of event which lies at the heart of the Bayesian approach to uncertain reasoning.

Keywords

Probability Function Boolean Algebra Logical Framework Logical Point Dutch Book 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burris, S., Sankappanavar, H.P.: A course in Universal Algebra. Springer, New York (1981)zbMATHCrossRefGoogle Scholar
  2. 2.
    Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Trends in Logic, vol. 15. Kluwer (2002)Google Scholar
  3. 3.
    de Finetti, B.: Sul significato soggettivo della probabilità. Fundamenta Mathematicae 17, 289–329 (1931)Google Scholar
  4. 4.
    de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7(1), 1–68 (1937)Google Scholar
  5. 5.
    de Finetti, B.: Theory of Probability, vol. 1. John Wiley and Sons (1974)Google Scholar
  6. 6.
    de Finetti, B.: Philosophical Lectures on Probability. Synthese Library, vol. 340. Springer (2008)Google Scholar
  7. 7.
    Paris, J.B.: The Uncertain Reasoner’s Companion: A Mathematical Perspective. Cambridge University Press (1994)Google Scholar
  8. 8.
    Paris, J.B.: A note on the Dutch Book method. In: De Cooman, G., Fine, T., Seidenfeld, T. (eds.) Proc. of ISIPTA 2001, Ithaca, NY, USA, pp. 301–306. Shaker Pub. Company (2001), http://www.maths.manchester.ac.uk/~jeff/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tommaso Flaminio
    • 1
  • Lluis Godo
    • 2
  • Hykel Hosni
    • 3
    • 4
  1. 1.Dipartimento di Scienze Teoriche e ApplicateUniversità dell’InsubriaVareseItaly
  2. 2.Artificial Intelligence Research Institute (IIIA - CSIC)BellaterraSpain
  3. 3.Scuola Normale SuperiorePisaItaly
  4. 4.CPNSS – London School of EconomicsUK

Personalised recommendations