Towards Generic MDE Support for Extracting Purpose-Specific Healthcare Models from Annotated, Unstructured Texts

  • Pieter Van Gorp
  • Irene Vanderfeesten
  • Willem Dalinghaus
  • Josh Mengerink
  • Bram van der Sanden
  • Pieter Kubben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7789)

Abstract

Once healthcare-specific models have been captured formally (i.e., in a metamodel-based language), the application of model transformation, analysis and code generation techniques is rather straightforward. Unfortunately, in many healthcare settings valuable domain knowledge is hidden in unstructured text (e.g., in a research paper or a national report on clinical guidelines). This motivates the need for tools to annotate such texts with metadata. Such tools can be prototyped easily for one type of healthcare artifacts (e.g., for clinical guidelines or care pathways) and one purpose (e.g., for workflow management or decision support) but it is a research challenge to build a robust and generic (i.e., metamodel-independent) tool for this important type of model extraction support. This paper desribes our ongoing work to building such a tool on top of a state-of-the-art MDE platform.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Gorp, P., Vanderfeesten, I., Dalinghaus, W., Mengerink, J., van der Sanden, B., Kubben, P.: MDE support for process-oriented health information systems: from theory to practice. In: Pre-proceedings of FHIES 2012 (August 2012)Google Scholar
  2. 2.
    Ross Bullock, M., et al.: Surgical management of depressed cranial fractures. Neurosurgery 58(suppl. 3), S56–S60, discussion Si–iv (2006)Google Scholar
  3. 3.
    Kubben, P.: Neuromind (December 2012), http://apps.digitalneurosurgeon.com/neuromind
  4. 4.
    Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Lobach, D.F., Kerner, N.: A systematic process for converting text-based guidelines into a linear algorithm for electronic implementation. In: Proc. AMIA Symp., pp. 507–511 (2000)Google Scholar
  6. 6.
    Haskell, L.T., Monteforte, P.M.J., Shiffman, R.N., Coates, V.H., Nix, M.P.: S92 – applying the Guideline Elements Model (GEM) cutter II tool to guidelines represented in the national guideline clearinghouse (www.guideline.gov). Otolaryngol. Head Neck Surg. 143(suppl. 60-61) (July 2010)Google Scholar
  7. 7.
    Lorne Community Hospital: Anaphylaxis (2007), http://www.health.vic.gov.au/qum/downloads/anaphylaxis.pdf
  8. 8.
    South East Wales Cardiac Network: Integrated care pathway cardiac rehabilitation (May 2005), http://www.wales.nhs.uk/sitesplus/documents/986/ICPCardiacRehabPathwayJan2006.pdf
  9. 9.
    Elm Mount Units: Individual recovery/care plan review elm mount units (August 2012), http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/Elm%20Mount_CPT.pdf
  10. 10.
    Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing Conference, EDOC 2008, pp. 222–231. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pieter Van Gorp
    • 1
  • Irene Vanderfeesten
    • 1
  • Willem Dalinghaus
    • 1
  • Josh Mengerink
    • 1
  • Bram van der Sanden
    • 1
  • Pieter Kubben
    • 2
  1. 1.School of Industrial EngineeringEindhoven University of TechnologyThe Netherlands
  2. 2.Department of NeurosurgeryMaastricht University Medical CenterThe Netherlands

Personalised recommendations