Advertisement

How Low Can You Go: Balancing Performance with Anonymity in Tor

  • John Geddes
  • Rob Jansen
  • Nicholas Hopper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7981)

Abstract

Tor is one of the most popular anonymity systems in use today, in part because of its design goal of providing high performance. This has motivated research into performance enhancing modifications to Tor’s circuit scheduling, congestion control, and bandwidth allocation mechanisms. This paper investigates the effects of these proposed modifications on attacks that rely on network measurements as a side channel. We introduce a new class of induced throttling attacks in this space that exploit performance enhancing mechanisms to artificially throttle a circuit. We show that these attacks can drastically reduce the set of probable entry guards on a circuit, in many cases uniquely identifying the entry guard. Comparing to existing attacks, we find that although most of the performance enhancing modifications improve the accuracy of network measurements, the effectiveness of the attacks is reduced in some cases by making the Tor network more homogeneous. We conclude with an analysis of the total reduction in anonymity that clients face due to each proposed mechanism.

Keywords

Congestion Control Exponentially Weighted Move Average Sybil Attack Exit Node Admission Control Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AlSabah, M., Bauer, K., Goldberg, I.: Enhancing Tor’s performance using real-time traffic classification. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security. ACM (2012)Google Scholar
  2. 2.
    AlSabah, M., Bauer, K., Goldberg, I., Grunwald, D., McCoy, D., Savage, S., Voelker, G.M.: DefenestraTor: Throwing out windows in Tor. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 134–154. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Chaabane, A., Manils, P., Kaafar, M.A.: Digging into anonymous traffic: A deep analysis of the tor anonymizing network. In: 2010 4th International Conference on Network and System Security (NSS) (2010)Google Scholar
  4. 4.
    Chakravarty, S., Stavrou, A., Keromytis, A.D.: Traffic Analysis Against Low-Latency Anonymity Networks Using Available Bandwidth Estimation. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 249–267. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: PlanetLab: an overlay testbed for broad-coverage services. SIGCOMM Computer Communication Review 33 (2003)Google Scholar
  6. 6.
    Cohen, B.: Incentives build robustness in BitTorrent. In: Workshop on Economics of Peer-to-Peer Systems, vol. 6 (2003)Google Scholar
  7. 7.
    Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III anonymous remailer protocol. In: Proc. of IEEE Security and Privacy (2003)Google Scholar
  8. 8.
    Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Dingledine, R.: Adaptive throttling of Tor clients by entry guards. Technical Report 2010-09-001, The Tor Project (September 2010)Google Scholar
  10. 10.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In: Proceedings of the 13th Usenix Security Symposium (2004)Google Scholar
  11. 11.
    Douceur, J.R.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Evans, N.S., Dingledine, R., Grothoff, C.: A practical congestion attack on Tor using long paths. In: Proceedings of the 18th USENIX Security Symposium (2009)Google Scholar
  13. 13.
    Gopal, D., Heninger, N.: Torchestra: Reducing interactive traffic delays over Tor. In: Proc. of the Workshop on Privacy in the Electronic Society (2012)Google Scholar
  14. 14.
    Gulcu, C., Tsudik, G.: Mixing E-mail with Babel. In: Proceedings of the Symposium on Network and Distributed System Security (1996)Google Scholar
  15. 15.
    Hahne, E.: Round-robin scheduling for max-min fairness in data networks. IEEE Journal on Selected Areas in Communications 9(7) (1991)Google Scholar
  16. 16.
    Hastie, T.J., Tibshirani, R.J.: Generalized additive models, vol. 43 (1990)Google Scholar
  17. 17.
    Hopper, N., Vasserman, E.Y., Chan-Tin, E.: How much anonymity does network latency leak? In: Proceedings of the 14th ACM Conference on Computer and Communications Security. ACM (2007)Google Scholar
  18. 18.
    Houmansadr, A., Borisov, N.: SWIRL: A Scalable Watermark to Detect Correlated Network Flows. In: Proc. of the Network and Distributed Security Symp. (2011)Google Scholar
  19. 19.
    Jansen, R.: The Shadow Simulator, http://shadow.cs.umn.edu/
  20. 20.
    Jansen, R., Bauer, K., Hopper, N., Dingledine, R.: Methodically Modeling the Tor Network. In: Proceedings of the 5th Workshop on Cyber Security Experimentation and Test (August 2012)Google Scholar
  21. 21.
    Jansen, R., Hopper, N.: Shadow: Running Tor in a Box for Accurate and Efficient Experimentation. In: Proceedings of the 19th Network and Distributed System Security Symposium (2012)Google Scholar
  22. 22.
    Jansen, R., Syverson, P., Hopper, N.: Throttling Tor Bandwidth Parasites. In: Proceedings of the 21st USENIX Security Symposium (2012)Google Scholar
  23. 23.
    McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark places: Understanding the Tor network. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 63–76. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Mittal, P., Khurshid, A., Juen, J., Caesar, M., Borisov, N.: Stealthy traffic analysis of low-latency anonymous communication using throughput fingerprinting. In: Proceedings of the 18th ACM Conference on Computer and Communications Security. ACM (2011)Google Scholar
  25. 25.
    Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster protocol version 2. Draft (July 2003)Google Scholar
  26. 26.
    Moore, W.B., Wacek, C., Sherr, M.: Exploring the Potential Benefits of Expanded Rate Limiting in Tor: Slow and Steady Wins the Race With Tortoise. In: Proceedings of 2011 Annual Computer Security Applications Conference (2011)Google Scholar
  27. 27.
    Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: 2005 IEEE Symposium on Security and Privacy. IEEE (2005)Google Scholar
  28. 28.
    Øverlier, L., Syverson, P.: Locating Hidden Servers. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy (2006)Google Scholar
  29. 29.
    Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Tang, C., Goldberg, I.: An improved algorithm for Tor circuit scheduling. In: Proceedings of the 17th ACM Conference on Computer and Communications Security. ACM (2010)Google Scholar
  31. 31.
    The Tor Project: The Tor Metrics Portal, https://metrics.torproject.org/
  32. 32.
    Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending Anonymous Communication Against Passive Logging Attacks. In: Proceedings of the 2003 IEEE Symposium on Security and Privacy (May 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John Geddes
    • 1
  • Rob Jansen
    • 2
  • Nicholas Hopper
    • 1
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.U.S. Naval Research LaboratoryWashington, DCUSA

Personalised recommendations