Efficient Privacy-Preserving Stream Aggregation in Mobile Sensing with Low Aggregation Error

  • Qinghua Li
  • Guohong Cao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7981)


Aggregate statistics computed from time-series data contributed by individual mobile nodes can be very useful for many mobile sensing applications. Since the data from individual node may be privacy-sensitive, the aggregator should only learn the desired statistics without compromising the privacy of each node. To provide strong privacy guarantee, existing approaches add noise to each node’s data and allow the aggregator to get a noisy sum aggregate. However, these approaches either have high computation cost, high communication overhead when nodes join and leave, or accumulate a large noise in the sum aggregate which means high aggregation error. In this paper, we propose a scheme for privacy-preserving aggregation of time-series data in presence of untrusted aggregator, which provides differential privacy for the sum aggregate. It leverages a novel ring-based interleaved grouping technique to efficiently deal with dynamic joins and leaves and achieve low aggregation error. Specifically, when a node joins or leaves, only a small number of nodes need to update their cryptographic keys. Also, the nodes only collectively add a small noise to the sum to ensure differential privacy, which is O(1) with respect to the number of nodes. Based on symmetric-key cryptography, our scheme is very efficient in computation.


Mobile Node Communication Cost Mobile Sensing Aggregation Error Data Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: Proc. SenSys, pp. 85–98 (2009)Google Scholar
  2. 2.
    Mun, M., Reddy, S., Shilton, K., Yau, N., Burke, J., Estrin, D., Hansen, M., Howard, E., West, R., Boda, P.: Peir, the personal environmental impact report, as a platform for participatory sensing systems research. In: Proc. ACM MobiSys, pp. 55–68 (2009)Google Scholar
  3. 3.
    Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.: Bewell: A smartphone application to monitor, model and promote wellbeing. In: Intl. ICST Conf. on Pervasive Computing Technologies for Healthcare (2011)Google Scholar
  4. 4.
    Hicks, J., Ramanathan, N., Kim, D., Monibi, M., Selsky, J., Hansen, M., Estrin, D.: Andwellness: an open mobile system for activity and experience sampling. In: Proc. Wireless Health, pp. 34–43 (2010)Google Scholar
  5. 5.
    Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: Cartel: a distributed mobile sensor computing system. In: SenSys (2006)Google Scholar
  6. 6.
    Honicky, R., Brewer, E.A., Paulos, E., White, R.: N-smarts: networked suite of mobile atmospheric real-time sensors. In: NSDR (2008)Google Scholar
  7. 7.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: ACM SIGMOD (2010)Google Scholar
  8. 8.
    Shi, E., Chan, T.-H.H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Network and Distributed System Security Symposium, NDSS (2011)Google Scholar
  9. 9.
    Chan, T.-H.H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Dwork, C.: Differential privacy. Invited talk at ICALP (2006)Google Scholar
  12. 12.
    Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Li, Q., Cao, G.: Providing privacy-aware incentives for mobile sensing. In: Proc. IEEE PerCom (2013)Google Scholar
  14. 14.
    Zhu, Z., Cao, G.: Applaus: A privacy-preserving location proof updating system for location-based services. In: Proc. IEEE INFOCOM (2011)Google Scholar
  15. 15.
    Cristofaro, E.D., Soriente, C.: Short paper: Pepsi—privacy-enhanced participatory sensing infrastructure. In: Proc. ACM WiSec, pp. 23–28 (2011)Google Scholar
  16. 16.
    Li, Q., Cao, G.: Mitigating routing misbehavior in disruption tolerant networks. IEEE Transactions on Information Forensics and Security 7(2), 664–675 (2012)CrossRefGoogle Scholar
  17. 17.
    Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN) 5(3), 20:1–20:36 (2009)Google Scholar
  18. 18.
    Shi, J., Zhang, R., Liu, Y., Zhang, Y.: Prisense: privacy-preserving data aggregation in people-centric urban sensing systems. In: Proc. IEEE INFOCOM, pp. 758–766 (2010)Google Scholar
  19. 19.
    Rieffel, E.G., Biehl, J., van Melle, W., Lee, A.J.: Secured histories: computing group statistics on encrypted data while preserving individual privacy (2010) (submission)Google Scholar
  20. 20.
    Li, Q., Cao, G.: Efficient and privacy-preserving data aggregation in mobile sensing. In: Proc. IEEE ICNP (2012)Google Scholar
  21. 21.
    Chen, R., Reznichenko, A., Francis, P., Gehrke, J.: Towards statistical queries over distributed private user data. In: Proc. of NSDI (2012)Google Scholar
  22. 22.
    Proserpio, D., Goldberg, S., McSherry, F.: A workflow for differentially-private graph synthesis. In: Proc. ACM Workshop on Online Social Networks, WOSN, pp. 13–18 (2012)Google Scholar
  23. 23.
    Sala, A., Zhao, X., Wilson, C., Zheng, H., Zhao, B.Y.: Sharing graphs using differentially private graph models. In: Proc. ACM IMC, pp. 81–98 (2011)Google Scholar
  24. 24.
    Shao, M., Yang, Y., Zhu, S., Cao, G.: Towards statistically strong source anonymity for sensor networks. In: Proc. IEEE INFOCOM (2008)Google Scholar
  25. 25.
    Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy mechanisms. In: ACM Symposium on Theory of Computing, STOC, pp. 351–360 (2009)Google Scholar
  27. 27.
    Li, Q., Cao, G.: Efficient privacy-preserving stream aggregation in mobile sensing with low aggregation error. Technical Report, The Pennsylvania State University (April 2013),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Qinghua Li
    • 1
  • Guohong Cao
    • 1
  1. 1.Department of Computer Science and EngineeringThe Pennsylvania State UniversityUSA

Personalised recommendations