Array Insertion and Deletion P Systems

  • Henning Fernau
  • Rudolf Freund
  • Sergiu Ivanov
  • Markus L. Schmid
  • K. G. Subramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)

Abstract

We consider the (d-dimensional) array counterpart of string insertion and deletion grammars and use the operations of array insertion and deletion in the framework of P systems where the applicability of the rules depends on the membrane region. In this paper, we especially focus on examples of two-dimensional array insertion and deletion P systems and show that we can already obtain computational completeness using such P systems with a membrane structure of tree height of at most two and only the targets here, in, and out.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cook, C.R., Wang, P.S.-P.: A Chomsky hierarchy of isotonic array grammars and languages. Computer Graphics and Image Processing 8, 144–152 (1978)CrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varjù, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Grammatical Approach to Distribution and Cooperation. Gordon and Breach, London (1994)MATHGoogle Scholar
  3. 3.
    Dassow, J., Freund, R., Păun, G.: Cooperating array grammar systems. International Journal of Pattern Recognition and Artificial Intelligence 9(6), 1029–1053 (1995)CrossRefGoogle Scholar
  4. 4.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer (1989)Google Scholar
  5. 5.
    Ehrenfeucht, A., Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: On representing RE languages by one-sided internal contextual languages. Acta Cybernetica 12(3), 217–233 (1996)MathSciNetGoogle Scholar
  6. 6.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: The linear landscape of external contextual languages. Acta Informatica 35(6), 571–593 (1996)Google Scholar
  7. 7.
    Ehrenfeucht, A., Păun, G., Rozenberg, G.: On representing recursively enumerable languages by internal contextual languages. Theoretical Computer Science 205(1-2), 61–83 (1998)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Contextual array grammars and array P systems (submitted)Google Scholar
  9. 9.
    Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, G. (ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World Scientific, Singapore (1994)CrossRefGoogle Scholar
  10. 10.
    Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Freund, R., Păun, G., Rozenberg, G.: Contextual array grammars. In: Subramanian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 112–136. World Scientific (2007)Google Scholar
  12. 12.
    Freund, R., Rogozhin, Y., Verlan, S.: P systems with minimal left and right insertion and deletion. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS, vol. 7445, pp. 82–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Galiukschov, B.: Semicontextual grammars. Logica i Matem. Lingvistika, pp. 38–50. Tallin University (1981) (in Russian)Google Scholar
  14. 14.
    Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages. PhD thesis, Univ. of Colorado at Boulder (1982)Google Scholar
  15. 15.
    Haussler, D.: Insertion languages. Information Sciences 31(1), 77–89 (1983)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kari, L.: On Insertion and Deletion in Formal Languages. PhD thesis, University of Turku (1991)Google Scholar
  17. 17.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: Characterizing RE using insertion-deletion systems. In: Proc. of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333 (1997)Google Scholar
  18. 18.
    Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534 (1969)MATHGoogle Scholar
  19. 19.
    Păun, G.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)MATHCrossRefGoogle Scholar
  20. 20.
    Păun, G.: Membrane Computing. An Introduction. Springer (2002)Google Scholar
  21. 21.
    Păun, G., Nguyen, X.M.: On the inner contextual grammars. Rev. Roum. Math. Pures Appl. 25, 641–651 (1980)MATHGoogle Scholar
  22. 22.
    Păun, G., Rozenberg, G., Salomaa, A.: Contextual grammars: erasing, determinism, one-sided contexts. In: Rozenberg, G., Salomaa, A. (eds.) Developments in Language Theory, pp. 370–388. World Scientific Publ., Singapore (1994)Google Scholar
  23. 23.
    Păun, G., Rozenberg, G., Salomaa, A.: Contextual grammars: parallelism and blocking of derivation. Fundamenta Informaticae 25, 381–397 (1996)MathSciNetMATHGoogle Scholar
  24. 24.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  25. 25.
    The P systems Web page, http://ppage.psystems.eu/
  26. 26.
    Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)MATHGoogle Scholar
  27. 27.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer, Berlin (1997)MATHGoogle Scholar
  28. 28.
    Verlan, S.: Recent developments on insertion-deletion systems. Comp. Sci. J. of Moldova 18(2), 210–245 (2010)MathSciNetMATHGoogle Scholar
  29. 29.
    Verlan, S.: Study of Language-theoretic Computational Paradigms Inspired by Biology. Habilitation thesis, University of Paris Est (2010)Google Scholar
  30. 30.
    Wang, P.S.-P.: Some new results on isotonic array grammars. Information Processing Letters 10, 129–131 (1980)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Henning Fernau
    • 1
  • Rudolf Freund
    • 2
  • Sergiu Ivanov
    • 3
  • Markus L. Schmid
    • 1
  • K. G. Subramanian
    • 4
  1. 1.Fachbereich 4 – Abteilung InformatikwissenschaftenUniversität TrierTrierGermany
  2. 2.Institut für ComputersprachenTechnische Universität WienWienAustria
  3. 3.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris EstCréteilFrance
  4. 4.School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations