On the Power of P Automata

  • Erzsébet Csuhaj-Varjú
  • György Vaszil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)


We study the computational power of P automata, variants of symport/antiport P systems which characterize string languages by applying a mapping to the sequence of multisets entering the system during computations. We consider the case when the input mapping is defined in such a way that it maps a multiset to the set of strings consisting of all permutations of its elements. We show that the computational power of this type of P automata is strictly less than so called restricted logarithmic space Turing machines, and we also exhibit a strict infinite hierarchy within the accepted language class based on the number of membranes present in the system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of P automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 76–89. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: [10], ch. 6, pp. 144–167Google Scholar
  3. 3.
    Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the EATCS 78, 231–236 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP automata. Annals of Bucharest University Mathematics-Informatics Series LVIII, 5–22 (2009)Google Scholar
  6. 6.
    Ibarra, O.H.: Membrane hierarchy in P systems. Theoretical Computer Science 334(1-3), 115–129 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO - Informatique théorique/Theoretical Informatics 14(1), 67–82 (1980)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Păun, G.: Membrane Computing: An Introduction. Natural Computing Series. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computers, Communication and Control V(2), 238–250 (2010)Google Scholar
  10. 10.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar
  11. 11.
    Pérez–Jiménez, M.J.: A computational complexity theory in membrane computing. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)zbMATHGoogle Scholar
  13. 13.
    Vaszil, G.: On the parallelizability of languages accepted by P automata. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 170–178. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  • György Vaszil
    • 2
  1. 1.Department of Algorithms and Their Applications, Faculty of InformaticsEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Computer Science, Faculty of InformaticsUniversity of DebrecenDebrecenHungary

Personalised recommendations