Quantum Random Active Element Machine

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)


In [4], a computational procedure (Procedure 2) - combining quantum randomness and the active element machine (AEM) [5] - executes a universal Turing machine with Turing incomputable firing patterns. The procedure emulates any digital computer program so its computational steps are incomprehensible to an external observer. This procedure’s purpose is to hinder malware authors.


Turing Machine Quantum Randomness Recursive Function Computational Step External Observer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem and incomputability of quantum randomness. Phys. Rev. A 86, 062109, 1–11 (2012)Google Scholar
  2. 2.
    Calude, C.S., Dinneen, M.J., Dumitrescu, M., Svozil, K.: Experimental Evidence of Quantum Randomness Incomputability. Phys. Rev. A 82, 022102, 1–8 (2010)Google Scholar
  3. 3.
    Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer (2010)Google Scholar
  4. 4.
    Fiske, M.S.: Turing Incomputable Computation. In: Turing-100 Proceedings. Alan Turing Centenary. EasyChair, vol. 10, pp. 66–91 (2012),
  5. 5.
    Fiske, M.S.: The Active Element Machine. In: Unger, H., Kyamakya, K., Kacprzyk, J. (eds.) Autonomous Systems: Developments and Trends. SCI, vol. 391, pp. 69–96. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Fiske, M.S.: Non-autonomous Dynamical Systems Applicable to Neural Computation. Northwestern University (1996)Google Scholar
  7. 7.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT Press (1987)Google Scholar
  8. 8.
    Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. Journal of Modern Optics 47, 595–598 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Aemea InstituteSan FranciscoUSA

Personalised recommendations