Reaction Systems Made Simple

A Normal Form and a Classification Theorem
  • Luca Manzoni
  • Antonio E. Porreca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)

Abstract

Reaction systems are models of computation inspired by the interactions between biochemical reactions. We define a notion of multi-step simulation among reaction systems and derive a classification with respect to the amount of resources (reactants and inhibitors) involved in the reactions. We prove that one reactant and one inhibitor per reaction are sufficient to simulate arbitrary systems. Finally, we show that the equivalence relation of mutual simulation induces exactly five linearly ordered classes of reaction systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Ehrenfeucht, A., Main, M., Rozenberg, G.: Functions defined by reaction systems. International Journal of Foundations of Computer Science 22(1), 167–168 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75, 263–280 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical Computer Science 466, 87–96 (2012)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Manzoni
    • Antonio E. Porreca

      There are no affiliations available

      Personalised recommendations