Asymptotic Dynamics of (Some) Asyncronous Cellular Automata

  • Enrico Formenti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7956)


Cellular automata are a well-known discrete model for complex systems characterized by local interactions. Indeed, these local interactions cause the emergence of a global complex behavior. Cellular automata essentially consist in an infinite number of identical finite automata arranged on regular grid (ℤ in this talk). Each automaton updates its state on the basis of a local rule which takes into account the state of a fixed number of neighboring automata.


Cellular Automaton Formal Language Local Interaction Finite Automaton Local Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Proceedings of Artificial Life IV, pp. 382–387. MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)MathSciNetGoogle Scholar
  3. 3.
    Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-asynchronous cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 653–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Systems 16(1), 1–27 (2005)MathSciNetGoogle Scholar
  5. 5.
    Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theor. Comput. Sci. 362(1-3), 1–16 (2006)zbMATHCrossRefGoogle Scholar
  6. 6.
    Lumer, E.D., Nicolis, G.: Synchronous versus asynchronous dynamics in spatially distributed systems. Physica D 71, 440–452 (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic 2d cellular automata: A study of asynchronous 2d minority. Theoretical Computer Science 410, 4844–4855 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Enrico Formenti
    • 1
  1. 1.Laboratoire I3SUniversité Nice Sophia AntipolisSophia AntipolisFrance

Personalised recommendations