Soundness of Inprocessing in Clause Sharing SAT Solvers

  • Norbert Manthey
  • Tobias Philipp
  • Christoph Wernhard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)


We present a formalism that models the computation of clause sharing portfolio solvers with inprocessing. The soundness of these solvers is not a straightforward property since shared clauses can make a formula unsatisfiable. Therefore, we develop characterizations of simplification techniques and suggest various settings how clause sharing and inprocessing can be combined. Our formalization models most of the recent implemented portfolio systems and we indicate possibilities to improve these. A particular improvement is a novel way to combine clause addition techniques – like blocked clause addition – with clause deletion techniques – like blocked clause elimination or variable elimination.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: Revisiting clause exchange in parallel SAT solving. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 200–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.M., Piette, C.: Penelope, a parallel clause-freezer solver. In: SAT Challenge 2012; Solver and Benchmark Descriptions, pp. 43–44 (2012)Google Scholar
  3. 3.
    Audemard, G., Lagniez, J.-M., Mazure, B., Saïs, L.: On freezing and reactivating learnt clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 188–200. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proc. 21st Int. Joint Conf. on Artifical Intelligence (IJCAI 2009), pp. 399–404. Morgan Kaufmann (2009)Google Scholar
  5. 5.
    Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. Journal of Artificial Intelligence Research 22(1), 319–351 (2004)MathSciNetMATHGoogle Scholar
  6. 6.
    Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria (2010)Google Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: Proc. 36th Annual ACM/IEEE Design Automation Conf (DAC), pp. 317–320. ACM (1999)Google Scholar
  8. 8.
    Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver – efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17, 381–400 (1996), (Based on a technical report published already in 1994)Google Scholar
  9. 9.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. CACM 5(7), 394–397 (1962)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Annals of Mathematics and Artificial Intelligence 43(1), 239–253 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24(1-2), 67–100 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Guo, L., Hamadi, Y., Jabbour, S., Sais, L.: Diversification and intensification in parallel SAT solving. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 252–265. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Hamadi, Y., Jabbour, S., Piette, C., Sais, L.: Deterministic parallel DPLL. JSAT 7(4), 127–132 (2011)MathSciNetGoogle Scholar
  17. 17.
    Hamadi, Y., Jabbour, S., Sais, L.: Control-based clause sharing in parallel SAT solving. In: Proc. 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 499–504 (2009)Google Scholar
  18. 18.
    Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262 (2009)MATHGoogle Scholar
  19. 19.
    Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview on modern parallel SAT-solvers. In: Proc. Int. Conf. on Advanced Computer Science and Information Systems (ICACSIS 2011), pp. 201–206. IEEE (2011)Google Scholar
  22. 22.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning SAT instances for distributed solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 372–386. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Hyvärinen, A.E.J., Manthey, N.: Designing scalable parallel SAT solvers. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 214–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Grid-based SAT solving with iterative partitioning and clause learning. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 385–399. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96- 97(1), 149–176 (1999)CrossRefGoogle Scholar
  29. 29.
    Lanti, D., Manthey, N.: Sharing information in parallel search with search space partitioning. In: Learning and Intelligent Optimization – 7th Int. Conf. (LION 7) (to appear, 2013)Google Scholar
  30. 30.
    Lynce, I., Marques-Silva, J.P.: Probing-based preprocessing techniques for propositional satisfiability. In: Proc. 15th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2003), pp. 105–110. IEEE (2003)Google Scholar
  31. 31.
    Manthey, N.: Coprocessor 2.0 – A flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  32. 32.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Hardware and Software: Verification and Testing – 8th Int. Haifa Verification Conf. (HVC 2012). LNCS, Springer (to appear, 2013)Google Scholar
  33. 33.
    Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Martins, R., Manquinho, V., Lynce, I.: An overview of parallel SAT solving. Constraints 17(3), 304–347 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. 38th Annual ACM/IEEE Design Automation Conf. (DAC), pp. 530–535. ACM (2001)Google Scholar
  36. 36.
    Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artificial Intelligence 175(2), 512–525 (2011)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Roussel, O.: Description of ppfolio 2012. In: Proc. SAT Challenge 2012; Solver and Benchmark Descriptions, p. 46. Univ. of Helsinki (2012),
  38. 38.
    Soos, M.: Cryptominisat 2.5.0. In: SAT Race Competitive Event Booklet (July 2010), (retrieved February 11, 2013)
  39. 39.
    Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  40. 40.
    Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  41. 41.
    Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic Part II, 115–125 (1968)Google Scholar
  42. 42.
    Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., Porschen, S.: pfoliouzk: Solver description. In: Proc. SAT Challenge 2012; Solver and Benchmark Descriptions, p. 45. Univ. of Helsinki (2012),
  43. 43.
    Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Norbert Manthey
    • 1
  • Tobias Philipp
    • 1
  • Christoph Wernhard
    • 1
  1. 1.Knowledge Representation and Reasoning GroupTechnische Universität DresdenGermany

Personalised recommendations