Abstract

A backbone of a propositional CNF formula is a variable whose truth value is the same in every truth assignment that satisfies the formula. The notion of backbones for CNF formulas has been studied in various contexts. In this paper, we introduce local variants of backbones, and study the computational complexity of detecting them. In particular, we consider k- backbones, which are backbones for sub-formulas consisting of at most k clauses, and iterative k- backbones, which are backbones that result after repeated instantiations of k- backbones. We determine the parameterized complexity of deciding whether a variable is a k- backbone or an iterative k- backbone for various restricted formula classes, including Horn, definite Horn, and Krom. We also present some first empirical results regarding backbones for CNF-Satisfiability (SAT). The empirical results we obtain show that a large fraction of the backbones of structured SAT instances are local, in contrast to random instances, which appear to have few local backbones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A 43, 196–204 (1986)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. J. on Satisfiability, Boolean Modeling and Computation 8(1/2), 123–128 (2012)Google Scholar
  3. 3.
    Buresh-Oppenheim, J., Mitchell, D.: Minimum 2CNF resolution refutations in polynomial time. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 300–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Buresh-Oppenheim, J., Mitchell, D.: Minimum witnesses for unsatisfiable 2CNFs. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 42–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of propositional horn formulae. J. Logic Programming 1(3), 267–284 (1984)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, pp. 248–253 (2001)Google Scholar
  9. 9.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Fellows, M.R., Szeider, S., Wrightson, G.: On finding short resolution refutations and small unsatisfiable subsets. Theoretical Computer Science 351(3), 351–359 (2006)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series, vol. XIV. Springer, Berlin (2006)Google Scholar
  12. 12.
    Gallo, G., Longo, G., Pallotino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Applied Mathematics 42, 177–201 (1993)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation completeness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Hertli, T., Moser, R.A., Scheder, D.: Improving PPSZ for 3-SAT using critical variables. In: Schwentick, T., Dürr, C. (eds.) Symposium on Theoretical Aspects of Computer Science, vol. 9, pp. 237–248. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)Google Scholar
  15. 15.
    Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent, I., van Maaren, H., Walsh, T. (eds.) SAT 2000: Highlights of Satisfiability Research in the year 2000. Frontiers in Artificial Intelligence and Applications, pp. 283–292. Kluwer Academic (2000)Google Scholar
  16. 16.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic search. In: Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence, AAAI 1996, pp. 1194–1201. AAAI Press (1996)Google Scholar
  18. 18.
    Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, AAAI 2005, Pittsburgh, Pennsylvania, USA, July 9-13, pp. 1368–1373 (2005)Google Scholar
  19. 19.
    Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of cnf’s based on short tree-like resolution proofs. Electronic Colloquium on Computational Complexity (ECCC) 6(41) (1999)Google Scholar
  20. 20.
    Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth Annual IEEE Conference on Computational Complexity, pp. 116–124 (2000)Google Scholar
  21. 21.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its. Applications. Oxford University Press, Oxford (2006)MATHCrossRefGoogle Scholar
  22. 22.
    Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence, AAAI 1997, pp. 340–345. AAAI Press (1997)Google Scholar
  23. 23.
    Prelotani, D.: Efficiency and stability of hypergraph SAT algorithms. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability, pp. 479–498. AMS (1996)Google Scholar
  24. 24.
    Schneider, J., Froschhammer, C., Morgenstern, I., Husslein, T., Singer, J.M.: Searching for backbones – an efficient parallel algorithm for the traveling salesman problem. Computer Physics Communications 96, 173–188 (1996)MATHCrossRefGoogle Scholar
  25. 25.
    Slaney, J.K., Walsh, T.: Backbones in optimization and approximation. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, pp. 254–259 (2001)Google Scholar
  26. 26.
    Strichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ronald de Haan
    • 1
  • Iyad Kanj
    • 2
  • Stefan Szeider
    • 1
  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria
  2. 2.School of ComputingDePaul UniversityChicagoUSA

Personalised recommendations