In this paper we study the role of cliquewidth in succinct representation of Boolean functions. Our main statement is the following: Let Z be a Boolean circuit having cliquewidth k. Then there is another circuit Z * computing the same function as Z having treewidth at most 18k + 2 and which has at most 4|Z| gates where |Z| is the number of gates of Z. In this sense, cliquewidth is not more ‘powerful’ than treewidth for the purpose of representation of Boolean functions. We believe this is quite a surprising fact because it contrasts the situation with graphs where an upper bound on the treewidth implies an upper bound on the cliquewidth but not vice versa.

We demonstrate the usefulness of the new theorem for knowledge compilation. In particular, we show that a circuit Z of cliquewidth k can be compiled into a Decomposable Negation Normal Form (dnnf) of size O(918k k 2|Z|) and the same runtime. To the best of our knowledge, this is the first result on efficient knowledge compilation parameterized by cliquewidth of a Boolean circuit.


Boolean Function Tree Decomposition Primal Graph Argumentation Framework Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Darwiche, A.: On the tractable counting of theory models and its application to truth maintenance and belief revision. Journal of Applied Non-Classical Logics 11(1-2), 11–34 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Darwiche, A.: Sdd: A new canonical representation of propositional knowledge bases. In: IJCAI, pp. 819–826 (2011)Google Scholar
  6. 6.
    Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. (JAIR) 17, 229–264 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Dvorák, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded clique-width. In: COMMA, pp. 219–230 (2010)Google Scholar
  8. 8.
    Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ferrara, A., Pan, G., Vardi, M.Y.: Treewidth in verification: Local vs. Global. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Gurski, F., Wanke, E.: The tree-width of clique-width bounded graphs without K n,n. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 196–205. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Hlinený, P., Oum, S.I.: Finding branch-decompositions and rank-decompositions. SIAM J. Comput. 38(3), 1012–1032 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Oum, S.I.: Rank-width is less than or equal to branch-width. Journal of Graph Theory 57(3), 239–244 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Oum, S.I., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jha, A.K., Suciu, D.: On the tractability of query compilation and bounded treewidth. In: ICDT, pp. 249–261 (2012)Google Scholar
  15. 15.
    Kanté, M.M., Rao, M.: \(\mathbb F\)-rank-width of (edge-colored) graphs. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 158–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Igor Razgon
    • 1
  • Justyna Petke
    • 2
  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonUK
  2. 2.Department of Computer ScienceUniversity College LondonUK

Personalised recommendations