Experiments with Reduction Finding

  • Charles Jordan
  • Łukasz Kaiser
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)


Reductions are perhaps the most useful tool in complexity theory and, naturally, it is in general undecidable to determine whether a reduction exists between two given decision problems. However, asking for a reduction on inputs of bounded size is essentially a \(\Sigma^p_2\) problem and can in principle be solved by ASP, QBF, or by iterated calls to SAT solvers. We describe our experiences developing and benchmarking automatic reduction finders. We created a dedicated reduction finder that does counter-example guided abstraction refinement by iteratively calling either a SAT solver or BDD package. We benchmark its performance with different SAT solvers and report the tradeoffs between the SAT and BDD approaches. Further, we compare this reduction finder with the direct approach using a number of QBF and ASP solvers. We describe the tradeoffs between the QBF and ASP approaches and show which solvers perform best on our \(\Sigma^p_2\) instances. It turns out that even state-of-the-art solvers leave a large room for improvement on problems of this kind. We thus provide our instances as a benchmark for future work on \(\Sigma^p_2\) solvers.


Conjunctive Normal Form Predicate Symbol Propositional Variable Disjunctive Normal Form Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Balcázar, J.L., Immerman, N.: A first-order isomorphism theorem. SIAM J. Comput. 26(2), 539–556 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Crouch, M., Immerman, N., Moss, J.E.B.: Finding reductions automatically. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 181–200. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Faber, W., Ricca, F.: Solving hard ASP programs efficiently. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 240–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 43–73. Amer. Mathematical Soc. (1974)Google Scholar
  7. 7.
    Gold, E.: Language identification in the limit. Inform. Control 10(5), 447–474 (1967)zbMATHCrossRefGoogle Scholar
  8. 8.
    Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. Springer (2007)Google Scholar
  9. 9.
    Grohe, M.: Fixed-point logics on planar graphs. In: Proc. of LICS 1998, pp. 6–15. IEEE Computer Society (1998)Google Scholar
  10. 10.
    Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59(5), 27:1–27:64 (2012)Google Scholar
  11. 11.
    Immerman, N.: Relational queries computable in polynomial time. Inform. Control 68, 86–104 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Immerman, N.: Descriptive Complexity. Springer (1999)Google Scholar
  14. 14.
    Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 230–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The seventh QBF solvers evaluation (QBFEVAL’10). In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 237–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Vardi, M.Y.: The complexity of relational query languages. In: Proc. of STOC 1982, pp. 137–146. ACM (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Charles Jordan
    • 1
  • Łukasz Kaiser
    • 2
  1. 1.ERATO Minato ProjectJST & Hokkaido UniversityJapan
  2. 2.LIAFACNRS & Université Paris DiderotFrance

Personalised recommendations