Community-Based Partitioning for MaxSAT Solving

  • Ruben Martins
  • Vasco Manquinho
  • Inês Lynce
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)

Abstract

Unsatisfiability-based algorithms for Maximum Satisfiability (MaxSAT) have been shown to be very effective in solving several classes of problem instances. These algorithms rely on successive calls to a SAT solver, where an unsatisfiable subformula is identified at each iteration. However, in some cases, the SAT solver returns unnecessarily large subformulas. In this paper a new technique is proposed to partition the MaxSAT formula in order to identify smaller unsatisfiable subformulas at each call of the SAT solver. Preliminary experimental results analyze the effect of partitioning the MaxSAT formula into communities. This technique is shown to significantly improve the unsatisfiability-based algorithm for different benchmark sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coudert, O.: On Solving Covering Problems. In: Proceedings of the Design Automation Conference, pp. 197–202 (June 1996)Google Scholar
  2. 2.
    Martins, R., Manquinho, V., Lynce, I.: On Partitioning for Maximum Satisfiability. In: European Conference on Artificial Intelligence, pp. 913–914 (2012)Google Scholar
  3. 3.
    Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ansótegui, C., Bonet, M., Levy, J.: A New Algorithm for Weighted Partial MaxSAT. In: AAAI Conference on Artificial Intelligence, pp. 3–8 (2010)Google Scholar
  7. 7.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-Guided Binary Search Algorithms for Maximum Satisfiability. In: AAAI Conference on Artificial Intelligence, pp. 36–41 (2011)Google Scholar
  8. 8.
    Janota, M., Lynce, I., Manquinho, V., Marques-Silva, J.: PackUp: Tools for Package Upgradability Solving. Journal on Satisfiability, Boolean Modeling and Computation 8(1/2), 89–94 (2012)MathSciNetGoogle Scholar
  9. 9.
    Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
  10. 10.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 8, 95–100 (2012)MathSciNetGoogle Scholar
  11. 11.
    Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-Based Weighted MaxSAT Solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Park, T.J., Gelder, A.V.: Partitioning Methods for Satisfiability Testing on Large Formulas. Information and Computation 162(1-2), 179–184 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Application in VLSI domain. IEEE Transactions on VLSI Systems 7, 69–79 (1999)CrossRefGoogle Scholar
  14. 14.
    Ansótegui, C., Giráldez-Cru, J., Levy, J.: The Community Structure of SAT Formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69(026113) (2004)Google Scholar
  17. 17.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  18. 18.
    Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing modularity is hard. arXiv: physics, 0608255 (2006)Google Scholar
  19. 19.
    Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 066111 (2004)Google Scholar
  20. 20.
    Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics 2008(10), P10008 (2008)Google Scholar
  22. 22.
    Morgado, A., Marques-Silva, J.: Combinatorial Optimization Solutions for the Maximum Quartet Consistency Problem. Fundamenta Informaticae 102(3-4), 363–389 (2010)MathSciNetMATHGoogle Scholar
  23. 23.
    Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: PBS: A backtrack search pseudo Boolean solver. In: Symposium on the Theory and Applications of Satisfiability Testing, pp. 346–353 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ruben Martins
    • 1
  • Vasco Manquinho
    • 1
  • Inês Lynce
    • 1
  1. 1.IST/INESC-IDTechnical University of LisbonPortugal

Personalised recommendations