Exploiting the Power of mip Solvers in maxsat

  • Jessica Davies
  • Fahiem Bacchus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)

Abstract

maxsat is an optimization version of satisfiability. Since many practical problems involve optimization, there are a wide range of potential applications for effective maxsat solvers. In this paper we present an extensive empirical evaluation of a number of maxsat solvers. In addition to traditional maxsat solvers, we also evaluate the use of a state-of-the-art Mixed Integer Program (mip) solver, cplex, for solving maxsat. mip solvers are the most popular technology for solving optimization problems and are also theoretically more powerful than sat solvers. In fact, we show that cplex is quite effective on a range of maxsat instances. Based on these observations we extend a previously developed hybrid approach for solving maxsat, that utilizes both a sat solver and a mip solver. Our extensions aim to take better advantage of the power of the mip solver. The resulting improved hybrid solver is shown to be quite effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted maxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial maxsat. In: Proceedings of the AAAI National Conference (AAAI), pp. 3–8 (2010)Google Scholar
  3. 3.
    Argelich, J., Li, C.M., Manyà, F., Planes, J.: The maxsat evaluations (2007-2011), http://www.maxsat.udl.cat
  4. 4.
    Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–64 (2010)Google Scholar
  5. 5.
    Buss, S.R.: Lectures on proof theory. Tech. rep. (1996), http://www.math.ucsd.edu/~sbuss/ResearchWeb/Barbados95Notes/reporte.pdf
  6. 6.
    Chandrasekaran, K., Karp, R., Moreno-Centeno, E., Vempala, S.: Algorithms for implicit hitting set problems. In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 614–629 (2011)Google Scholar
  7. 7.
    Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An efficient weighted max-sat solver. Journal of Artificial Intelligence Research (JAIR) 31, 1–32 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of the AAAI National Conference (AAAI), pp. 36–41 (2011)Google Scholar
  11. 11.
    Hooker, J.N.: Planning and scheduling by logic-based benders decomposition. Operations Research 55(3), 588–602 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Karp, R.M.: Implicit hitting set problems and multi-genome alignment. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, p. 151. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Kügel, A.: Improved exact solver for the weighted Max-SAT problem. In: Workshop on the Pragmatics of SAT (2010)Google Scholar
  14. 14.
    Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Resolution-based lower bounds in maxsat. Constraints 15(4), 456–484 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, L., Bacchus, F.: Maxsat heuristics for cost optimal planning. In: Proceedings of the AAAI National Conference (AAAI) (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jessica Davies
    • 1
  • Fahiem Bacchus
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations