A Modular Approach to MaxSAT Modulo Theories

  • Alessandro Cimatti
  • Alberto Griggio
  • Bastiaan Joost Schaafsma
  • Roberto Sebastiani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)


In this paper we present a novel “modular” approach for (weighted partial) MaxSAT Modulo Theories. The main idea is to combine a lazy SMT solver with a purely-propositional (weighted partial) MaxSAT solver, by making them exchange information iteratively: the former produces an increasing set of theory lemmas which are used by the latter to progressively refine an approximation of the final subset of the soft clauses, which is eventually returned as output.

The approach has several practical features. First, it is independent from the theories addressed. Second, it is simple to implement and to update, since both SMT and MaxSAT solvers can be used as blackboxes. Third, it can be interfaced with external MaxSAT and SMT solvers in a plug-and-play manner, so that to benefit for free of tools which are or will be made available.

We have implemented our approach on top of the MathSAT5 SMT solver and of a selection of external MaxSAT solvers, and we have evaluated it by means of an extensive empirical test on SMT-LIB benchmarks. The results confirm the validity and potential of this approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Max-SAT 2013, Eighth Max-SAT Evaluation (2013), http://maxsat.ia.udl.cat
  4. 4.
    Ansótegui, C., Bofill, M., Palahí, M., Suy, J., Villaret, M.: Satisfiability Modulo Theories: An Efficient Approach for the Resource-Constrained Project Scheduling Problem. In: SARA (2011)Google Scholar
  5. 5.
    Ansótegui, C., Bofill, M., Palahí, M., Suy, J., Villaret, M.: Solving weighted CSPs with meta-constraints by reformulation into Satisfiability Modulo Theories. Constraints 18(2) (2013)Google Scholar
  6. 6.
    Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196 (2013)Google Scholar
  7. 7.
    Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on Demand in SAT Modulo Theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 512–526. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Biere, et al. (eds.) Handbook of Satisfiability, ch. 26, IOS Press (2009)Google Scholar
  9. 9.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T.A., Ranise, S., van Rossum, P., Sebastiani, R.: Efficient Theory Combination via Boolean Search. Information and Computation 204(10) (2006)Google Scholar
  10. 10.
    Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability modulo the theory of costs: Foundations and applications. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: A Modular Approach to MaxSAT Modulo Theories (2013), Extended version http://disi.unitn.it/~rseba/sat13/extended.pdf
  12. 12.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT 5 SMT Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Cimatti, A., Griggio, A., Sebastiani, R.: Computing Small Unsatisfiable Cores in SAT Modulo Theories. JAIR 40 (2011)Google Scholar
  14. 14.
    Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Fu, Z., Malik, S.: On solving the partial Max-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Heras, F., Larrosa, J., Oliveras, A.: Minimaxsat: An Efficient Weighted Max-SAT solver. JAIR 31 (2008)Google Scholar
  18. 18.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: AAAI (2011)Google Scholar
  19. 19.
    Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Biere, et al. (eds.) Handbook of Satisfiability, ch. 19. IOS Press (2009)Google Scholar
  20. 20.
    Li, C.M., Manyà, F., Planes, J.: New inference rules for Max-SAT. JAIR 30 (2007)Google Scholar
  21. 21.
    Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Sebastiani, R.: Lazy Satisfiability Modulo Theories. JSAT 3(3-4) (2007)Google Scholar
  24. 24.
    Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) Cost Functions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 484–498. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Cimatti
    • 1
  • Alberto Griggio
    • 1
  • Bastiaan Joost Schaafsma
    • 1
    • 2
  • Roberto Sebastiani
    • 2
  1. 1.FBK-IRSTTrentoItaly
  2. 2.DISIUniversity of TrentoItaly

Personalised recommendations