The Proof-Search Problem between Bounded-Width Resolution and Bounded-Degree Semi-algebraic Proofs

  • Albert Atserias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7962)


In recent years there has been some progress in our understanding of the proof-search problem for very low-depth proof systems, e.g. proof systems that manipulate formulas of very low complexity such as clauses (i.e. resolution), DNF-formulas (i.e. R(k) systems), or polynomial inequalities (i.e. semi-algebraic proof systems). In this talk I will overview this progress. I will start with bounded-width resolution, whose specialized proof-search algorithm is as easy as uninteresting, but whose proof-search problem is unintentionally solved by certain versions of conflict-driven clause-learning algorithms with restarts. I will continue with R(k) systems, whose proof-search problem turned out to hide the complexity of certain two-player games of interest in the area of systems synthesis and verification. And I will close with bounded-degree semi-algebraic proof systems, whose proof-search problem turned out to hide the complexity of systems of linear equations over finite fields, among other problems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., Razborov, A.A.: Resolution Is Not Automatizable Unless W[P] Is Tractable. SIAM J. Comput. 38(4), 1347–1363 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Atserias, A., Bonet, M.L.: On the Automatizability of Resolution and Related Propositional Proof Systems. Information and Computation 189(2), 182–201 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Atserias, A., Fichte, J.K., Thurley, M.: Clause-Learning Algorithms with Many Restarts and Bounded-Width Resolution. Journal of Artificial Intelligence Research 40, 353–373 (2011)MathSciNetMATHGoogle Scholar
  4. 4.
    Atserias, A., Maneva, E.: Mean-payoff games and propositional proofs. Information and Computation 209(4), 664–691 (2011)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Barak, B., Brandão, F., Harrow, A., Kelner, J., Zhou, Y.: Hypercontractivity, Sum-of-Squares Proofs, and their Applications. In: Proc. of 44th ACM Symposium on Theory of Computing (STOC), pp. 307–326 (2012)Google Scholar
  6. 6.
    Beame, P., Karp, R., Pitassi, T., Saks, M.: The efficiency of resolution and Davis-Putnam procedures. SIAM J. Comput. 31(4), 1048–1075 (2002)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Beame, P., Kautz, H., Sabharwal, A.: Towards Understanding and Harnessing the Potential of Clause Learning. Journal of Artificial Intelligence Research 22, 319–351 (2004)MathSciNetMATHGoogle Scholar
  8. 8.
    Beame, P., Pitassi, T.: Simplified and improved Resolution lower bounds. In: Proc. of the 27th IEEE Foundations of Computer Science (FOCS), pp. 274–282 (1996)Google Scholar
  9. 9.
    Beckmann, A., Pudlák, P., Thapen, N.: Parity games and propositional proofs (April 2013) (in preparation )Google Scholar
  10. 10.
    Ben-Sasson, E.: Hard examples for the bounded depth Frege proof system. Computational Complexity 11, 109–136 (2002)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near Optimal Separation of Tree-Like and General Resolution. Combinatorica 24(4), 585–604 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ben-Sasson, E., Wigderson, A.: Short proofs are narrow–resolution made simple. Journal of the ACM 48(2), 149–169 (2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Springer (1999)Google Scholar
  14. 14.
    Bonet, M.L., Domingo, C., Gavaldà, R., Maciel, A., Pitassi, T.: Non-automatizability of bounded-depth Frege proofs. Computational Complexity 13, 47–68 (2004)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bonet, M.L., Esteban, J.L., Galesi, N., Johansen, J.: On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems. SIAM J. Comput. 30(5), 1462–1484 (2000)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Bonet, M.L., Galesi, N.: Optimality of Size-Width Tradeoffs for Resolution. Computational Complexity 10(4), 261–276 (2001)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bonet, M.L., Pitassi, T., Raz, R.: On Interpolation and Automatization for Frege Systems. SIAM J. Comput. 29(6), 1939–1967 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4(4), 305–337 (1973)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proc. of the 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 174–183 (1996)Google Scholar
  20. 20.
    Condon, A.: The Complexity of Stochastic Games. Information and Computation 96, 203–224 (1992)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Cook, S.A., Reckhow, R.A.: The Relative Efficiency of Propositional Proof Systems. J. Symbolic Logic 44(1), 36–50 (1979)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer (1999)Google Scholar
  23. 23.
    Ehrenfeucht, A., Mycielsky, J.: Positional strategies for mean payoff games. International Journal of Game Theory 8(2), 109–113 (1979)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Emerson, E.A., Jutla, C.S.: Tree Automata, Mu-Calculus and Determinacy. In: Proc. of 32nd IEEE Foundations of Computer Science (FOCS), pp. 368–377 (1991)Google Scholar
  25. 25.
    Esteban, J.L., Galesi, N., Messner, J.: On the Complexity of Resolution with Bounded Conjunctions. Theoretical Computer Science 321(2-3), 347–370 (2004)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Grigoriev, D.: Linear Lower Bound on Degrees of Positivstellensatz Calculus Proofs for the Parity. Theor. Comput. Sci. 259, 613–622 (2001)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. Moscow Mathematical Journal 2(4), 647–679 (2002)MathSciNetMATHGoogle Scholar
  28. 28.
    Huang, L., Pitassi, T.: Automatizability and Simple Stochastic Games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 605–617. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Krajíček, J.: On the weak pigeonhole principle. Fundamenta Mathematicae 170(1-3), 123–140 (2001)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Krajíček, J.: Lower Bounds to the Size of Constant-Depth Propositional Proofs. J. of Symbolic Logic 59(1), 73–86 (1994)MATHCrossRefGoogle Scholar
  31. 31.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. of Symbolic Logic 62(2), 457–486 (1997)MATHCrossRefGoogle Scholar
  32. 32.
    Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver and Lasserre relaxations for 0-1 programming. Mathematics of Operations Research 28, 470–496 (2001)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1, 166–190 (1991)MATHCrossRefGoogle Scholar
  34. 34.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS Press (2009)Google Scholar
  35. 35.
    Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. Thesis, California Institute of Technology, Pasadena, CA (2000)Google Scholar
  36. 36.
    Pitassi, T., Segerlind, N.: Exponential Lower Bounds and Integrality Gaps for Tree-Like Lovász-Schrijver Procedures. SIAM J. Comput. 41(1), 128–159 (2012)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Pudlák, P.: On reducibility and symmetry of disjoint NP-pairs. Theor. Comput. Science 295, 323–339 (2003)MATHCrossRefGoogle Scholar
  38. 38.
    Pudlák, P.: On the complexity of propositional calculus. In: Sets and Proofs, Invited papers from Logic Colloquium 1997, pp. 197–218. Cambridge Univ. Press (1999)Google Scholar
  39. 39.
    Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics 52(1), 83–106 (1994)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Stålmarck, G.: Short resolution proofs for a sequence of tricky formulas. Acta Informatica 33(3), 277–280 (1996)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Stengle, G.: A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry. Mathematische Annalen 207(2), 87–97 (1974)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Urquhart, A.: Hard examples for resolution. Journal of the ACM 34(1), 209–219 (1987)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. Theoretical Computer Science 158, 343–359 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Albert Atserias
    • 1
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations