Advertisement

Circular Projection for Pattern Recognition

  • Guangyi Chen
  • Tien Dai Bui
  • Sridhar Krishnan
  • Shuling Dai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7951)

Abstract

There are a number of methods that transform 2-D shapes into periodic 1-D signals so that faster recognition can be achieved. However, none of these methods are both noise-robust and scale invariant. In this paper, we propose a circular projection method for transforming 2-D shapes into periodic 1-D signals. We then apply a number of feature extraction methods to the 1-D signals. Our method is invariant to the translation, rotation and scaling of the 2-D shapes. Also, our method is robust to Gaussian white noise. In addition, it performs very well in terms of classification rates for a well-known shape dataset.

Keywords

Circular projection Ramanujan Sums (RS) invariant features pattern recognition Gaussian white noise fast Fourier transform (FFT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coifman, R.R., Donoho, D.L.: Translation invariant de-noising, Wavelets and Statistics. Springer Lecture Notes in Statistics, vol. 103, pp. 125–150. Springer, New York (1994)CrossRefGoogle Scholar
  2. 2.
    Ramanujan, R.: On certain trigonometric sums and their applications. Trans. Cambridge Philos. Soc. 22, 259–276 (1918)Google Scholar
  3. 3.
    Sugavaneswaran, L., Xie, S., Umapathy, K., Krishnan, S.: Time-frequency analysis via Ramanujan sums. IEEE Signal Processing Letters 19(6), 352–355 (2012)CrossRefGoogle Scholar
  4. 4.
    Bui, T.D., Chen, G.Y., Feng, L.: An orthonormal-shell-Fourier descriptor for rapid matching of patterns in image database. International Journal of Pattern Recognition and Artificial Intelligence 15(8), 1213–1229 (2001)CrossRefGoogle Scholar
  5. 5.
    Tang, Y.Y., Li, B.F., Li, H., Lin, J.: Ring-projection-wavelet-fractal signatures: a novel approach to feature extraction. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(8), 1130–1134 (1998)CrossRefGoogle Scholar
  6. 6.
    Kingsbury, N.G.: Complex wavelets for shift invariant analysis and filtering of signals. Journal of Applied and Computational Harmonic Analysis 10(3), 234–253 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, G.Y., Xie, W.F.: Contour-based feature extraction using dual-tree complex wavelets. International Journal of Pattern Recognition and Artificial Intelligence 21(7), 1233–1245 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, G.Y., Bui, T.D., Krzyzak, A.: Invariant pattern recognition using radon, dual-tree complex wavelet and Fourier transforms. Pattern Recognition 42(9), 2013–2019 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, G.Y., Xie, W.F.: Pattern recognition with SVM and dual-tree complex wavelets. Image and Vision Computing 25(6), 960–966 (2007)CrossRefGoogle Scholar
  10. 10.
    Thakoor, N., Gao, J., Jung, S.: Hidden Markov Model-Based Weighted Likelihood Discriminant for 2-D Shape Classification. IEEE Transactions on Image Processing 16(11), 2707–2719 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guangyi Chen
    • 1
    • 2
  • Tien Dai Bui
    • 1
  • Sridhar Krishnan
    • 2
  • Shuling Dai
    • 3
  1. 1.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  2. 2.Department of Electrical and Computer EngineeringRyerson UniversityTorontoCanada
  3. 3.State Key Lab. of Virtual Reality Technology and SystemsBeihang UniversityBeijingP.R. China

Personalised recommendations