Formalizing Group Blind Signatures and Practical Constructions without Random Oracles

  • Essam Ghadafi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7959)

Abstract

Group blind signatures combine anonymity properties of both group signatures and blind signatures and offer privacy for both the message to be signed and the signer. The primitive has been introduced with only informal definitions for its required security properties. In this paper, we offer two main contributions: first, we provide foundations for the primitive and present formal security definitions. In the process, we identify and address some subtle issues which were not considered by previous constructions and (informal) security definitions. Our second main contribution is a generic construction that yields practical schemes with a round-optimal signing protocol and constant-size signatures. Our constructions permit dynamic and concurrent enrollment of new members and satisfy strong security requirements. To the best of our knowledge, our schemes are the first provably secure constructions in the standard model. In addition, we introduce some new building blocks which may be of independent interest.

Keywords

Blind signatures group signatures group blind signatures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A Paradigm for Designing Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)Google Scholar
  4. 4.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203. Plenum Press (1983)Google Scholar
  9. 9.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  10. 10.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  11. 11.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption and an Application to Non-Interactively Delegatable Credentials. In Cryptology ePrint Archive, Report 2010/233 (2010), http://eprint.iacr.org/2010/233.pdf
  13. 13.
    Ghadafi, E.: Formalizing group blind signatures and practical constructions without random oracles. In Cryptology ePrint Archive, Report 2011/402 (2011), http://eprint.iacr.org/2011/402.pdf
  14. 14.
    Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Groth, J.: Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack Secure Cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Nguyen, K.Q., Mu, Y., Varadharajan, V.: Divertible Zero-Knowledge Proof of Polynomial Relations and Blind Group Signature. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 117–128. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Okamoto, T., Ohta, K.: Divertible Zero Knowledge Interactive Proofs and Commutative Random Self-Reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  24. 24.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. 25.
    Wu, Q., Zhang, F., Susilo, W., Mu, Y.: An Efficient Static Blind Ring Signature Scheme. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 410–423. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Essam Ghadafi
    • 1
  1. 1.University of BristolUnited Kingdom

Personalised recommendations