Related-Key Boomerang Attacks on KATAN32/48/64

  • Takanori Isobe
  • Yu Sasaki
  • Jiageng Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7959)

Abstract

KATAN/KTANTAN is a family of hardware oriented block ciphers proposed at CHES 2009. Although the KTANTAN family have been broken by a meet-in-the-middle approach, the KATAN family are secure at present. In this paper, we investigate the KATAN family in the related-key boomerang framework with several techniques. By using an efficient differential characteristics search method, long boomerang distinguishers can be built. Furthermore, the key recovery phase is optimized by exploiting several properties of the round function such as the high linearity of the round function and the slow key diffusion. As a result, we can attack 174, 145 and 130 rounds of KATAN32, KATAN48 and KATAN64, which substantially improve the known best results whose attacked rounds are 120, 103, 94 rounds, respectively. Our attacks are confirmed by various experimental verifications, especially, we give concrete right quartets for KATAN32.

Keywords

KATAN32/48/64 ultra lightweight block cipher related-key attack boomerang attack differential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Ågren, M.: Some Instant- and Practical-Time Related-Key Attacks on KTANTAN32/48/64. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 213–229. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanalysis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 202–221. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Albrecht, M.R., Leander, G.: An All-In-One Approach to Differential Cryptanalysis for Small Block Ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanalysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 200–212. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Knellwolf, S.: Accelerated Key Search for the KATAN Family of Block Ciphers. In: ECRYPT Workshop on Lightweight Cryptography (2011)Google Scholar
  10. 10.
    Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack – Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptology 7(4), 229–246 (1994)MATHCrossRefGoogle Scholar
  15. 15.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takanori Isobe
    • 1
  • Yu Sasaki
    • 2
  • Jiageng Chen
    • 3
  1. 1.Kobe UniversityJapan
  2. 2.NTT Secure Platform LaboratoriesJapan
  3. 3.Japan Advanced Institute of Science TechnologyJapan

Personalised recommendations