Advertisement

Case-Based Reasoning on E-Community Knowledge

  • Emmanuelle Gaillard
  • Jean Lieber
  • Yannick Naudet
  • Emmanuel Nauer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7969)

Abstract

This paper presents MKM, a meta-knowledge model to manage knowledge reliability, in order to extend a CBR system so that it can reason on partially reliable, non expert, knowledge from the Web. Knowledge reliability is considered from the point of view of the decision maker using the CBR system. It is captured by the MKM model including notions such as belief, trust, reputation and quality, as well as their relationships and rules to evaluate knowledge reliability. We detail both the model and the associated approach to extend CBR. Given a problem to solve for a specific user, reliability estimation is used to filter knowledge with high reliability as well as to rank the results produced by the CBR system, ensuring the quality of results.

Keywords

case-based reasoning meta-knowledge reliability filtering ranking personalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Naudet, Y., Latour, T., Vidou, G., Djaghloul, Y.: Towards a novel approach for high-stake decision support system based on community contributed knowledge base. In: 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 730–736 (2010)Google Scholar
  2. 2.
    Skaf-Molli, H., Desmontils, E., Nauer, E., Canals, G., Cordier, A.E., Lefevre, M.: Knowledge Continuous Integration Process (K-CIP). In: 21st World Wide Web Conference - Semantic Web Collaborative Spaces Workshop, pp. 1075–1082 (2012)Google Scholar
  3. 3.
    Richards, D.: A social software/web 2.0 approach to collaborative knowledge engineering. Information Sciences 179(15), 2515–2523 (2009)CrossRefGoogle Scholar
  4. 4.
    Hendricks, V.F., Pritchard, D.: New waves in epistemology. New Waves in Philosophy. Palgrave Macmillan (2008)Google Scholar
  5. 5.
    Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41(2), 58–65 (1998)CrossRefGoogle Scholar
  6. 6.
    Even, A., Shankaranarayanan, G.: Utility-driven assessment of data quality. SIGMIS Database 38(2), 75–93 (2007)CrossRefGoogle Scholar
  7. 7.
    Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, University of Stirling (1994)Google Scholar
  8. 8.
    Cook, K.S., Hardin, R., Levi, M.: Cooperation Without Trust? The Russell Sage Foundation Series on Trust. Russell Sage (2007)Google Scholar
  9. 9.
    Grandison, T., Sloman, M.: Trust management tools for internet applications. In: First International Conference on Trust Management, pp. 91–107 (2003)Google Scholar
  10. 10.
    Golbeck, J.A.: Computing and applying trust in web-based social networks. PhD thesis, University of Maryland (2005)Google Scholar
  11. 11.
    Castelfranchi, C., Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy, Social Importance, and Quantification. In: Third International Conference on Multi Agent Systems (ICMAS 1998), p. 72 (1998)Google Scholar
  12. 12.
    Artz, D., Gil, Y.: A survey of trust in computer science and the Semantic Web. Web Semantics: Science, Services and Agents on the WWW 5(2), 58–71 (2007)CrossRefGoogle Scholar
  13. 13.
    Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th Bled Electronic Commerce Conference, pp. 324–337 (2002)Google Scholar
  14. 14.
    Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: HICSS, p. 9 (2000)Google Scholar
  15. 15.
    Knap, T., Mlýnková, I.: Revealing beliefs influencing trust between members of the czech informatics community. In: Datta, A., Shulman, S., Zheng, B., Lin, S.-D., Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS, vol. 6984, pp. 226–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Quijano-Sánchez, L., Bridge, D., Díaz-Agudo, B., Recio-García, J.A.: A case-based solution to the cold-start problem in group recommenders. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 342–356. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems 13(2), 119–154 (2006)CrossRefGoogle Scholar
  18. 18.
    Neisse, R., Wegdam, M., Van Sinderen, M., Lenzini, G.: Trust management model and architecture for context-aware service platforms. In: On the Move to Meaningful Internet Systems: CoopIS, DOA, ODBASE, GADA, and IS, pp. 1803–1820 (2007)Google Scholar
  19. 19.
    Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A.: Opportunistic acquisition of adaptation knowledge and cases - The IaKa Approach. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 150–164. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Leake, D.B., Whitehead, M.: Case provenance: The value of remembering case sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 194–208. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Saaya, Z., Smyth, B., Coyle, M., Briggs, P.: Recommending case bases: Applications in social web search. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 274–288. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: The adaptive web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Badra, F., Bendaoud, R., Bentebitel, R., Champin, P.-A., Cojan, J., Cordier, A., Després, S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli, A., Toussaint, Y.: Taaable: Text Mining, Ontology Engineering, and Hierarchical Classification for Textual Case-Based Cooking. In: ECCBR Workshops, Workshop of the First Computer Cooking Contest, pp. 219–228 (2008)Google Scholar
  24. 24.
    Gaillard, E., Lieber, J., Nauer, E.: Adaptation knowledge discovery for cooking using closed itemset extraction. In: The Eighth International Conference on Concept Lattices and their Applications, CLA 2011 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emmanuelle Gaillard
    • 1
    • 2
    • 3
  • Jean Lieber
    • 1
    • 2
    • 3
  • Yannick Naudet
    • 4
  • Emmanuel Nauer
    • 1
    • 2
    • 3
  1. 1.LORIAUniversité de LorraineVandoeuvre-lès-NancyFrance
  2. 2.CNRSVandoeuvre-lès-NancyFrance
  3. 3.InriaVillers-lès-NancyFrance
  4. 4.CRP Henri TudorLuxembourg

Personalised recommendations