Refinement-Based Similarity Measure over DL Conjunctive Queries

  • Antonio A. Sánchez-Ruiz
  • Santiago Ontañón
  • Pedro Antonio González-Calero
  • Enric Plaza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7969)


Similarity assessment is a key operation in case-based reasoning and other areas of artificial intelligence. This paper focuses on measuring similarity in the context of Description Logics (DL), and specifically on similarity between individuals. The main contribution of this paper is a novel approach based on measuring similarity in the space of Conjunctive Queries, rather than in the space of concepts. The advantage of this approach is two fold. On the one hand it is independent of the underlying DL, and thus, there is no need to design similarity measures for different DL, and on the other hand, the approach is computationally more efficient than searching in the space of concepts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armengol, E., Plaza, E.: Relational case-based reasoning for carcinogenic activity prediction. Artif. Intell. Rev. 20(1-2), 121–141 (2003)CrossRefGoogle Scholar
  2. 2.
    Ashburner, M.: Gene ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, New York (2003)Google Scholar
  4. 4.
    Bergmann, R., Stahl, A.: Similarity measures for object-oriented case representations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 25–36. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Bisson, G.: Learing in FOL with a similarity measure. In: Proceedings of AAAI 1992, pp. 82–87 (1992)Google Scholar
  6. 6.
    Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED CT: An exploration into large description logic-based biomedical terminologies. Artif. Intell. Med. 39, 183–195 (2007), CrossRefGoogle Scholar
  7. 7.
    Cojan, J., Lieber, J.: An algorithm for adapting cases represented in an expressive description logic. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 51–65. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    d’Amato, C., Staab, S., Fanizzi, N.: On the influence of description logics ontologies on conceptual similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Emde, W., Wettschereck, D.: Relational instance based learning. In: Saitta, L. (ed.) Machine Learning - Proceedings 13th International Conference on Machine Learning, pp. 122–130. Morgan Kaufmann Publishers (1996)Google Scholar
  10. 10.
    González-Calero, P.A., Díaz-Agudo, B., Gómez-Albarrán, M.: Applying DLs for retrieval in case-based reasoning. In: Proceedings of the 1999 Description Logics Workshop (DL 1999) (1999)Google Scholar
  11. 11.
    Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Machine Learning 43(1-2), 53–80 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Hutchinson, A.: Metrics on terms and clauses. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 138–145. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Completeness and properness of refinement operators in inductive logic programming. Journal of Logic Programming 34(3), 201–225 (1998)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Larson, J., Michalski, R.S.: Inductive inference of VL decision rules. SIGART Bull. 63(63), 38–44 (1977)CrossRefGoogle Scholar
  15. 15.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the LC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. Ph.D. thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany (January 2006)Google Scholar
  17. 17.
    Ontanón, S., Plaza, E.: Similarity Measures over Refinement Graphs. Machine Learning 87, 57–92 (2012)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ontañón, S., Plaza, E.: On similarity measures based on a refinement lattice. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 240–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Sánchez-Ruiz, A.A., González-Calero, P.A., Díaz-Agudo, B.: Abstraction in knowledge-rich models for case-based planning. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 313–327. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Sánchez-Ruiz, A.A., Ontañón, S., González-Calero, P.A., Plaza, E.: Measuring similarity in description logics using refinement operators. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 289–303. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci. 239(2), 189–210 (2000)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Winkler, W.E., Thibaudeau, Y.: An application of the Fellegi-Sunter model of record linkage to the 1990 U.S. decennial census. In: U.S. Decennial Census. Technical report, US Bureau of the Census (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio A. Sánchez-Ruiz
    • 1
  • Santiago Ontañón
    • 2
  • Pedro Antonio González-Calero
    • 1
  • Enric Plaza
    • 3
  1. 1.Dep. Ingeniería del Software e Inteligencia ArtificialUniversidad Complutense de MadridSpain
  2. 2.Computer Science DepartmentDrexel UniversityPhiladelphiaUSA
  3. 3.IIIA, Artificial Intelligence Research Institute, CSIC, Spanish Council for Scientific ResearchCampus UABBellaterraSpain

Personalised recommendations