Advertisement

A Multi-Objective Evolutionary Algorithm Fitness Function for Case-Base Maintenance

  • Eduardo Lupiani
  • Susan Craw
  • Stewart Massie
  • Jose M. Juarez
  • Jose T. Palma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7969)

Abstract

Case-Base Maintenance (CBM) has two important goals. On the one hand, it aims to reduce the size of the case-base. On the other hand, it has to improve the accuracy of the CBR system. CBM can be represented as a multi-objective optimization problem to achieve both goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been recognised as appropriate techniques for multi-objective optimisation because they perform a search for multiple solutions in parallel. In the present paper we introduce a fitness function based on the Complexity Profiling model to perform CBM with MOEA, and we compare its results against other known CBM approaches. From the experimental results, CBM with MOEA shows regularly good results in many case-bases, despite the amount of redundant and noisy cases, and with a significant potential for improvement.

Keywords

Multiobjective Evolutionary Algorithm Noisy Case Binary Tournament Selection Minimum Error Rate Noisy Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning algorithms. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 283–288. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Coello, C.C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation (2007)Google Scholar
  3. 3.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cummins, L., Bridge, D.: Maintenance by a committee of experts: The MACE approach to case-base maintenance. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 120–134. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2) (2002)Google Scholar
  6. 6.
    Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml
  7. 7.
    Gates, G.: Reduced nearest neighbor rule. IEEE Transactions on Information Theory 18(3), 431 (1972)CrossRefGoogle Scholar
  8. 8.
    Hart, P.: Condensed nearest neighbor rule. IEEE Transactions on Information Theory 14(3), 515+ (1968)Google Scholar
  9. 9.
    Holland, J.H.: Adaptation in Natural And Artificial Systems. MIT Press (1975)Google Scholar
  10. 10.
    Ishibuchi, H., Nakashima, T., Nii, M.: Genetic-algorithm-based instance and feature selection. In: Frasson, C., McCalla, G.I., Gauthier, G. (eds.) ITS 1992. LNCS, vol. 608, pp. 95–112. Springer, Heidelberg (1992)Google Scholar
  11. 11.
    Cano, J.R., Herrera, F., Lozano, M.: Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data & Knowledge Engineering 60(1), 90–108 (2007)CrossRefGoogle Scholar
  12. 12.
    Kim, K., Han, I.: Maintaining case-based reasoning systems using a genetic algorithms approach. Expert Systems with Applications 21(3), 139–145 (2001)CrossRefGoogle Scholar
  13. 13.
    Leake, D., Wilson, M.: How many cases do you need? Assessing and predicting case-base coverage. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 92–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 196–207. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case based reasoning. In: 20th National Conference on Artificial Intelligence, AAAI 2005, vol. 1, pp. 216–221 (2005)Google Scholar
  16. 16.
    Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 186–197. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Pan, R., Yang, Q., Pan, S.: Mining competent case bases for case-based reasoning. Artificial Intelligence 171(16-17), 1039–1068 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Smyth, B., Keane, M.: Remembering to forget - a competence-preserving case deletion policy for case-based reasoning systems. In: International Joint Conference on Artificial Intelligence, IJCAI 1995, pp. 377–382 (1995)Google Scholar
  20. 20.
    Smyth, B., McKenna, E.: Competence guided incremental footprint-based retrieval. Knowledge-Based Systems 14(3-4), 155–161 (2001)CrossRefGoogle Scholar
  21. 21.
    Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems Man and Cybernetics SMC 2(3), 408 (1972)Google Scholar
  22. 22.
    Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algorithms. Machine Learning 38(3), 257–286 (2000)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eduardo Lupiani
    • 1
  • Susan Craw
    • 2
  • Stewart Massie
    • 2
  • Jose M. Juarez
    • 1
  • Jose T. Palma
    • 1
  1. 1.University of MurciaSpain
  2. 2.The Robert Gordon UniversityScotland, UK

Personalised recommendations