Analytic Root Clustering: A Complete Algorithm Using Soft Zero Tests

  • Chee Yap
  • Michael Sagraloff
  • Vikram Sharma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7921)

Abstract

A challenge to current theories of computing in the continua is the proper treatment of the zero test. Such tests are critical for extracting geometric information. Zero tests are expensive and may be uncomputable. So we seek geometric algorithms based on a weak form of such tests, called soft zero tests. Typically, algorithms with such tests can only determine the geometry for “nice” (e.g., non-degenerate, non-singular, smooth, Morse, etc) inputs. Algorithms that avoid such niceness assumptions are said to be complete. Can we design complete algorithms with soft zero tests? We address the basic problem of determining the geometry of the roots of a complex analytic function f. We assume effective box functions for f and its higher derivatives are provided. The problem is formalized as the root clustering problem, and we provide a complete (δ,ε)-exact algorithm based on soft zero tests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batra, P.: Globally convergent, iterative path-following for algebraic equations. Math. in Computer Sci. 4(4), 507–537 (2010); Special IssueMathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998)CrossRefGoogle Scholar
  3. 3.
    Brattka, V., Hertling, P.: Feasible real random access machines. J. of Complexity 14(4), 490–526 (1998)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Dellnitz, M., Schütze, O., Zheng, Q.: Locating all the zeros of an analytic function in one complex variable. J. Comput. Appl. Math. 138(2), 325–333 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Du, Z., Yap, C.: Absolute approximation of the general hypergeometric functions. In: In Proc. 7th Asian Symp. on Computer Math (ASCM), December 8-10, pp. 246–249. KIAS, Seoul (2005)Google Scholar
  6. 6.
    Emiris, I.Z., Pan, V.Y., Tsigaridas, E.P.: Algebraic and numerical algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook, 3rd edn., vol. 1, ch. 17. CRC Press Inc., Boca Raton (2012)Google Scholar
  7. 7.
    Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.-C.: On location and approximation of clusters of zeros of analytic functions. Found. Comp. Math. 5(3), 257–311 (2005)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Halperin, D., Fogel, E., Wein, R.: CGAL Arrangements and Their Applications. Springer, Berlin (2012)MATHGoogle Scholar
  9. 9.
    Hemaspaandra, L.A., Ogihara, M.: The Complexity Theory Companion. Springer (2002)Google Scholar
  10. 10.
    Johnson, T., Tucker, W.: Enclosing all zeros of an analytic function - a rigorous approach. J. Comput. Appl. Math. 228(1), 418–423 (2009)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Basel (1991)MATHCrossRefGoogle Scholar
  12. 12.
    Marden, M.: The Geometry of Zeros of a Polynomial in a Complex Variable. Math. Surveys. American Math. Soc., New York (1949)MATHGoogle Scholar
  13. 13.
    Niu, X.-M., Sakurai, T., Sugiura, H.: A verified method for bounding clusters of zeros of analytic functions. J. Comput. Appl. Math. 199(2), 263–270 (2007)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Proc. Symp. on Geometry Processing, pp. 245–254. ACM Press, New York (2004)Google Scholar
  15. 15.
    Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. OUP (2002)Google Scholar
  16. 16.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  17. 17.
    Rump, S.M.: Ten methods to bound multiple roots of polynomials. J. Computational and Applied Mathematics 156, 403–432 (2003)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex root isolation. In: 36th ISSAC, June 8-11, pp. 353–360. San Jose, California (2011)Google Scholar
  19. 19.
    Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press, Inc. (1988)Google Scholar
  20. 20.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Yakoubsohn, J.-C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J. of Complexity 21(5), 652–690 (2005)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Yap, C., Sharma, V., Lien, J.-M.: Towards Exact Numerical Voronoi diagrams. In: IEEE 9th Int. Symp. of Voronoi Diagrams in Sci. and Eng (ISVD), June 27-29, pp. 2–16. Rutgers U, NJ (2012); Invited TalkGoogle Scholar
  23. 23.
    Yap, C.K.: Theory of real computation according to EGC. In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds.) Real Number Algorithms. LNCS, vol. 5045, pp. 193–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chee Yap
    • 1
  • Michael Sagraloff
    • 2
  • Vikram Sharma
    • 3
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkU.S.A.
  2. 2.Max-Planck Institute of Computer ScienceSaarbrückenGermany
  3. 3.Institute of Mathematical SciencesChennaiIndia

Personalised recommendations