Realizability Models Separating Various Fan Theorems

  • Robert S. Lubarsky
  • Michael Rathjen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7921)

Abstract

We develop a realizability model in which the realizers are the reals not just Turing computable in a fixed real but rather the reals in a countable ideal of Turing degrees. This is then applied to prove several separation results involving variants of the Fan Theorem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awodey, S., Birkedal, L.: Elementary axioms for local maps of toposes. Journal of Pure and Applied Algebra 177(3), 215–230 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bauer, A.: The Realizability approach to computable analysis and topology. Ph.D. Thesis (2000)Google Scholar
  3. 3.
    Beeson, M.: Foundations of Constructive Mathematics. Springer (1985)Google Scholar
  4. 4.
    Berger, J.: The Logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 35–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Berger, J.: A decomposition of Brouwers fan theorem. Journal of Logic and Analysis 1(6), 1–8 (2009)MathSciNetGoogle Scholar
  6. 6.
    Berger, J.: A separation result for varieties of Brouwer’s fan theorem. In: Proceedings of the 10th Asian Logic Conference (alc 10), September 1-6, Kobe University in Kobe, hyogo (2008); Arai, et al (eds.) World Scientific, pp.85–92 (2010) Google Scholar
  7. 7.
    Berger, J., Ishihara, H.: Brouwers fan theorem and unique existence in constructive analysis. Mathematical Logic Quarterly 51(4), 360–364 (2005), doi:10.1002/malq.200410038MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Birkedal, L., van Oosten, J.: Relative and modified relative realizability. Annals of Pure and Applied Logic 118(1-2), 115–132 (2002)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bishop, E., Bridges, D.: Constructive Analysis. Springer (1985)Google Scholar
  10. 10.
    de Jongh, D.H.J.: The Maximality of the intuitionistic predicate calculus with respect to Heyting’s Arithmetic. Typed manuscript (1969)Google Scholar
  11. 11.
    Diener, H.: Compactness under constructive scrutiny. Ph.D. Thesis (2008)Google Scholar
  12. 12.
    Diener, H., Loeb, I.: Sequences of real functions on [0, 1] in constructive reverse mathematics. Annals of Pure and Applied Logic 157(1), 50–61 (2009)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Fourman, M., Hyland, J.M.E.: Sheaf models for analysis. In: Fourman, M., Mulvey, C., Scott, D. (eds.) Applications of Sheaves. Lecture Notes in Mathematics, vol. 753, pp. 280–301. Springer, Heidelberg (1979), http://dx.doi.org/10.1007/BFb0061823 CrossRefGoogle Scholar
  14. 14.
    Goodman, N.D.: Relativized realizability in intuitionistic arithmetic of all finite types. Journal of Symbolic Logic 43, 23–44 (1978)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Julian, W., Richman, F.: A Uniformly continuous function on [0,1] that is everywhere different from its infimum. Pacific Journal of Mathematics 111(2), 333–340 (1984)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics. North-Holland (1965)Google Scholar
  17. 17.
    Lubarsky, R.: Independence results around Constructive ZF. Annals of Pure and Applied Logic 132(2-3), 209–225 (2005)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Lubarsky, R.S., Diener, H.: Separating the Fan Theorem and Its Weakenings. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 280–295. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Moschovakis, J.: Another Unique Weak König’s Lemma. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation, Ontos (to appear, 2013)Google Scholar
  20. 20.
    Nemoto, T.: Weak weak König’s Lemma in constructive reverse mathematics. In: Proceedings of the 10th Asian Logic Conference (alc 10), September 1-6, Kobe University in Kobe, hyogo (2008) Arai, et al (eds) World Scientific, pp. 263–270 (2010)Google Scholar
  21. 21.
    Rathjen, M.: Constructive Set Theory and Brouwerian Principles. Journal of Universal Computer Science 11, 2008–2033 (2005)MathSciNetMATHGoogle Scholar
  22. 22.
    Simpson, S.: Subsystems of Second Order Arithmetic. ASL/Cambridge University Press (2009)Google Scholar
  23. 23.
    Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. 1. North-Holland (1988)Google Scholar
  24. 24.
    van Oosten, J.: A Semantical proof of De Jongh’s theorem. Archive for Mathematical Logic 31, 105–114 (1991)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    van Oosten, J.: Realizability: An Introduction to its Categorical Side. Elsevier (2008)Google Scholar
  26. 26.
    Yu, X., Simpson, S.: Measure theory and weak Königs lemma. Archive for Mathematical Logic 30, 171–180 (1990)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert S. Lubarsky
    • 1
  • Michael Rathjen
    • 2
  1. 1.Department of Mathematical SciencesFlorida Atlantic UniversityBoca RatonU.S.A.
  2. 2.Department of Pure MathematicsUniversity of LeedsLeedsEngland

Personalised recommendations