Closed Choice for Finite and for Convex Sets

  • Stéphane Le Roux
  • Arno Pauly
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7921)

Abstract

We investigate choice principles in the Weihrauch lattice for finite sets on the one hand, and convex sets on the other hand. Increasing cardinality and increasing dimension both correspond to increasing Weihrauch degrees. Moreover, we demonstrate that the dimension of convex sets can be characterized by the cardinality of finite sets encodable into them. Precisely, choice from an n + 1 point set is reducible to choice from a convex set of dimension n, but not reducible to choice from a convex set of dimension n − 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic 163(8), 968–1008 (2012)CrossRefGoogle Scholar
  2. 2.
    Brattka, V., Gherardi, G.: Borel complexity of topological operations on computable metric spaces. Journal of Logic and Computation 19(1), 45–76 (2009)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bulletin of Symbolic Logic 17(1), 73–117 (2011), arXiv:0905.4685MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. Journal of Symbolic Logic 76, 143–176 (2011), arXiv:0905.4679MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass Theorem is the jump of Weak König’s Lemma. Annals of Pure and Applied Logic 163(6), 623–625 (2012), also arXiv:1101.0792MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Brattka, V., Le Roux, S., Pauly, A.: On the computational content of the brouwer fixed point theorem. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 56–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Brattka, V., Pauly, A.: Computation with advice. Electronic Proceedings in Theoretical Computer Science 24 (2010), http://arxiv.org/html/1006.0551 cCA 2010
  8. 8.
    Gasarch, W., Martin, G.: Bounded Queries in Recursion Theory. In: Progress in Computer Science & Applied Logic, vol. 16. Birkhäuser (1999)Google Scholar
  9. 9.
    Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), 393–425 (2009)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Ph.D. thesis, Fernuniversität, Gesamthochschule in Hagen (Oktober 1996)Google Scholar
  11. 11.
    Higuchi, K., Pauly, A.: The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2) (2013)Google Scholar
  12. 12.
    Kihara, T.: Incomputability of simply connected planar continua. Computability (2), 131–152 (2012)Google Scholar
  13. 13.
    Le Roux, S., Pauly, A.: Closed choice: Cardinality vs convex dimension. arXiv (2013)Google Scholar
  14. 14.
    Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set computability. Mathematical Logic Quarterly 54(5), 545–560 (2008)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Longpré, L., Kreinovich, V., Gasarch, W., Walster, W.: m solutions good, m − 1 solutions better. Applied Mathematical Sciences 2, 223–239 (2008)MathSciNetMATHGoogle Scholar
  16. 16.
    Mylatz, U.: Vergleich unstetiger Funktionen in der Analysis. Master’s thesis, Fachbereich Informatik, FernUniversität Hagen (May 1992)Google Scholar
  17. 17.
    Mylatz, U.: Vergleich unstetiger Funktionen : “Principle of Omniscience” und Vollständigkeit in der C-Hierarchie. Ph.D. thesis, Fernuniversität, Gesamthochschule in Hagen (May 2006)Google Scholar
  18. 18.
    Pauly, A.: How incomputable is finding Nash equilibria? Journal of Universal Computer Science 16(18), 2686–2710 (2010)MathSciNetMATHGoogle Scholar
  19. 19.
    Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly 56(5), 488–502 (2010)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Pauly, A., de Brecht, M.: Non-deterministic computation and the Jayne Rogers theorem. Electronic Proceedings in Theoretical Computer Science, DCM 2012 (2012) (to appear)Google Scholar
  21. 21.
    Stein, T.v.: Vergleich nicht konstruktiv lösbarer Probleme in der Analysis. Master’s thesis, Fachbereich Informatik, FernUniversität Hagen (1989)Google Scholar
  22. 22.
    Weihrauch, K.: The degrees of discontinuity of some translators between representations of the real numbers. Informatik Berichte 129, FernUniversität Hagen, Hagen (July 1992)Google Scholar
  23. 23.
    Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience principles. Informatik Berichte 130, FernUniversität Hagen, Hagen (September 1992)Google Scholar
  24. 24.
    Weihrauch, K.: Computable Analysis. Springer (2000)Google Scholar
  25. 25.
    Ziegler, M.: Real hypercomputation and continuity. Theory of Computing Systems 41, 177–206 (2007)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stéphane Le Roux
    • 1
  • Arno Pauly
    • 2
  1. 1.Department of MathematicsTechnische Universität DarmstadtGermany
  2. 2.Clare CollegeUniversity of CambridgeUnited Kingdom

Personalised recommendations